ArcGIS进阶:水源涵养功能分级评价操作

首先抛出水源涵养重要性评价的公式:水源涵养量=降雨量-蒸散发量-地表径流量,其中地表径流量=降雨量*平均地表径流系数

声明:以下数据来源于来自于牛强老师书籍(城乡规划GIS技术)。

以下给出重要性评价阈值表:

分了三级:一般、重要和极重要。
在这里插入图片描述
用到数据:降雨量数据、生态系统空间分布数据、年均蒸散发量数据、实验区域矢量数据。

开始实验之前,先通过扩展模块将【空间分析】工具激活,然后才可以使用其中的工具。
在这里插入图片描述

下图是降雨量数据,在研究区周边共有四个气象观测站,因此,就获得了这4个点位的数据,数据中包含很多字段,其中最有用的包括编号、年份和全天降雨量。
在这里插入图片描述
下图是对降雨量数据进行的【融合】操作,其目的是得到全年总降雨量,同时保留编号和年份。如下,在【融合_字段】里选择需要保留的编号和年份。
在这里插入图片描述
在【统计字段】里选择全天降雨量的SUM类型,用于得到每一年的全年总降雨量。
在这里插入图片描述
如下,得到了每年降雨量,接下来,我们要得到年均降雨量,也就是得到4个气象站点位的所有年份的平均降雨量,仍然使用融合工具。
在这里插入图片描述
如下,同样的操作,这里只保留编号,也就是气象站的编号。
在这里插入图片描述
在统计字段里选择【sum_全天降雨量】,统计类型选择平均值。
在这里插入图片描述
如下,我们就得到了年均降雨量,此时就只有四个点位和四个年均降雨量的值。
在这里插入图片描述
由于目前得到的年均降雨量是点位,也就是矢量数据,为了后续使用,需要进行插值运算,以获取整个研究区内的年均降雨量,这里选择的方法是【克里金法】。

如下,克里金法的工具位于【插值分析】内,在输入的要素中选择年均降雨量,参数里选择【普通克里金】、【球面函数】,在输出像元大小里选择【10米】。
在这里插入图片描述
然后进行【环境设置】的参数填报,在【环境设置】下找到【栅格分析】,在【掩膜】里选择此时实验的研究区范围数据,点击确定。
在这里插入图片描述
如下,得到克里金插值后的年均降雨量数据,此栅格数据留存,后面会使用。
在这里插入图片描述

接下来,将径流系数数据生成栅格数据。

如下,为径流系数对照表,当然此表的对应数值可能根据研究区域的不同而有所差异,各位同学可以根据阅读相关论文自行获取。
在这里插入图片描述
在数据处理之前,已经先根据对照表把生态空间数据里把径流系数的字段进去了,如下所示,此时,数据状态是矢量数据,

接下来的操作是将矢量数据转换成栅格数据。
在这里插入图片描述
如下,使用【转换工具】下的【要素转栅格】,在输入参数里的【字段】里选择【径流系数】,同样保持输出像元大小为【10米】。
在这里插入图片描述
如下,得到径流系数的栅格数据。
在这里插入图片描述
其中,用到的另外一个数据是【年均蒸散发量】,因为这个数据的计算比较特殊,这里就直接给出使用。
在这里插入图片描述

接下来,计算水源涵养量。

使用的工具是位于【地图代数】下的【栅格计算器】,如下所示。
在这里插入图片描述
根据开头提到的公式,计算:年均降雨量(克里金)-年均降雨量(克里金)*径流系数(面转栅格)-年均蒸散发量。

得到水源涵养量结果。
在这里插入图片描述
接下来,为了数据的方便使用,需要对得到的水源涵养量数据进行【归一化】处理,也就是到【0,1】之间,

但是为了提高数据的准确性,将数值【*1000】,把数据放大1000倍,得到归一化的结果。
在这里插入图片描述
接下来,将以上归一化的数据导出为.dbf格式。

先把值进行倒叙排列,然后根据【值*数量】得到水源涵养量。
在这里插入图片描述
然后根据累加方法,把累积涵养量和占比得出。
在这里插入图片描述
找出占比约等于50%的【值】,这里就是【776】,也就是分级点的值。
在这里插入图片描述
找出占比约等于80%的【值】,这里就是【680】,也就是另一个分级点的值。
在这里插入图片描述
最后,使用重分类方法,得到分级评价图。
在这里插入图片描述
如下,得到最终的水源涵养功能的评价分级图,其中,1表示一般,2表示重要,5表示极其重要。
在这里插入图片描述

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值