本系列记录大模型(LLMs)以及 RAG 项目背景下的问答提取工程化相关背景、理论、技术与实践,分 3 篇,本文是基础知识。
问答提取
背景
问答提取(Question Answering Extraction, QA Extraction)是从非结构化文本中自动识别并抽取问题及其对应答案的技术。
随着互联网信息的爆炸式增长,如何快速、准确地从大量文档中获取所需信息成为了关键挑战,尤其是在当前大模型训练以及知识库构建的浪潮下。传统的搜索方法往往返回整篇文档或段落,用户需要进一步筛选才能找到确切答案。而问答提取技术旨在直接提供精准的答案,极大提高了知识构建检索的效率。
目的
- 自动化处理:减少人工参与,实现大规模文本数据的高效处理。
- 提高准确性:通过自然语言处理和机器学习技术,提升识别问题和匹配答案的精度。
- 优化用户体验:为用户提供简洁明了的答案,节省时间和精力。
实际意义
- 训练数据:支持 24 x7 不知疲倦地提取问答对 ,降低人力成本。
- 教育辅助:帮助学生和教师快速查找知识点,促进学习效率。
- 医疗健康:辅助医生进行病例分析,提供诊断建议,改善医疗服务。
- 企业决策:为企业管理层提供及时的数据支持,辅助决策制定。
发展历史
- 早期阶段:基于关键词匹配和简单的规则系统,依赖预定义的模板和词典。
- 语义理解阶段:引入自然语言处理技术,开始理解句子的语法和语义结构。
- 统计方法阶段:利用概率模型和机器学习算法,从大量文本中学习模式。
- 深度学习阶段:采用神经网络尤其是变压器(Transformer)架构与大模型,显著提升了问答系统的性能。
最新技术
- 预训练语言模型:如 BERT、RoBERTa、T5 等,这些模型在大规模语料上进行了预训练,能够更好地理解和生成自然语言。
- 多模态融合:结合文本、图像、音频等多种形式的信息,增强对复杂问题的理解能力。
- 知识图谱:利用结构化的知识库来丰富问答系统的背景知识,提高回答的准确性和深度(见后文第一个问题)。
发展趋势
问答提取的最新技术主要依赖于预训练语言模型(如 BERT、Longformer)和检索增强生成(RAG)方法,结合多模态融合、对话式交互和知识图谱集成,以提高答案的准确性和多样性。此外,轻量化模型和高效推理引擎的发展使得这些系统能够在边缘设备上运行,同时支持个性化服务、实时互动和多语言处理,确保在不同领域提供定制化、快速响应的智能问答解决方案。
问答提取与知识图谱构建的区别?
区别
-
目标不同:
- 问答提取(QA Extraction):专注于从非结构化文本中自动识别并抽取问题及其对应的答案,目的是直接为用户提供精准的答案。
- 知识图谱构建(Knowledge Graph Construction, KGC):旨在从多个来源的数据中抽取实体、关系和属性,并将它们组织成一个结构化的图模型,以表示现实世界中的概念及其相互关系。
-
输出形式:
- 问答提取:输出是一系列的问题-答案对,通常用于即时信息检索和回答用户查询。
- 知识图谱构建:输出是一个包含节点(实体)和边(关系)的图结构,可以用来支持复杂的查询、推理和推荐系统。
-
数据处理深度:
- 问答提取:主要关注文本级别的理解,即句子或段落层次的信息抽取。
- 知识图谱构建:需要更深层次的数据处理,包括实体识别、关系抽取、本体建模等,以建立丰富的语义网络。
-
应用场景:
- 问答提取:适用于智能客服、教育辅助、医疗咨询等场景,强调即时性和准确性。
- 知识图谱构建:广泛应用于搜索引擎优化、个性化推荐、数据分析、智能助手等领域,强调长期价值和复杂查询能力。
联系
-
共享技术基础:
- 两者都依赖于自然语言处理(NLP)技术,如命名实体识别(NER)、依存句法分析、语义角色标注等。
- 都可以利用预训练的语言模型(如 BERT、RoBERTa)来提升文本理解和特征提取的能力。
-
互补作用:
- 问答提取可以从知识图谱中获取背景知识,提高答案的准确性和深度。
- 知识图谱构建可以使用问答提取的结果作为输入,丰富图谱的内容,特别是对于动态更新的知识领域。
-
共同挑战:
- 两者都需要解决歧义性、多义性、上下文理解等问题,以确保信息的正确性和一致性。
复杂度
- 问答提取:相对简单,主要集中在句子级别的理解。
- 知识图谱构建:更为复杂,涉及到大规模数据集成、消歧、链接预测等多个方面。
工具和技术栈
- 问答提取:常用工具包括 SpaCy、Stanford NLP、Hugging Face Transformers 等。
- 知识图谱构建:除了上述工具外,还可能用到 RDF、OWL、SPARQL 等语义网技术和图数据库(如 Neo 4 j、ArangoDB)。
问答提取和知识图谱构建在很多方面是相辅相成的。问答提取可以为知识图谱提供内容,而知识图谱则可以增强问答系统的深度和广度。
如何避免无答案或者无意义的问答对?
为了提高问答提取的质量,减少无用或不相关的问答对,可以采取以下策略:
-
文本清理:
- 去除无关字符、标签,分段分句。
-
结构识别:
- 识别标题、列表、图表等结构,这些结构需要专门的解析,作为潜在问题和答案的来源。
-
规则定义:
- 制定简单规则,例如问号后跟随的句子可能是答案。但是要基于语义方法去反向推断一下是否真的是答案。
- 使用正则表达式匹配常见问答模式。
-
机器学习:
- 如果有标注数据,训练模型预测问答对。
- 应用深度学习模型自动学习问答关系。
-
上下文保持:
- 确保问答对保留原文的上下文,逻辑连贯。
-
合理性检查:
- 移除不合理或无意义的问答对。
- 通过人工或半自动化方式审核,人工方式是万能的保底手段;这里自动化方式审核是一个难点,如果能够自动化审核,那么这个要素显然是可以合并到提取流程当中的。
问答提取现在还有哪些难点?
问答系统在研究和应用中面临的主要挑战和难点可以归纳为:
-
复杂问题理解:难以准确理解多子问题或模糊语义的问题,尤其是在开放领域和知识库不完整的情况下。
-
上下文记忆与理解:在多轮对话中,系统需记住并理解上下文以提供连贯准确的回答。
-
知识获取与更新:从海量复杂信息中筛选准确可靠的知识,并及时更新知识库是一大挑战。
-
推理与生成能力:在处理复杂问题和生成自然语言回答时,系统存在局限性。
-
语义消歧和句法模糊性:需要结合上下文确定词义,句法模糊性增加了理解难度。
-
信息提取技术挑战:网页和文档的多样性和复杂性使得准确提取信息困难。
-
知识图谱应用:将问答算法应用于新的 RDF 数据集存在挑战。
-
答案提取模块复杂性:特别是非命名实体的答案提取,如标记候选句子中的答案并评估结果。
-
深度学习技术应用:深度学习虽带来进步,但仍面临关键语义提取和问句意图感知等挑战。