希尔伯特《几何基础》的结束语

希尔伯特在《几何基础》的结束语中明确指出:一个公理集合必须具备系统的相容性(不导致自相矛盾)与相互独立性。在数学发展史上,这是第一次提出数学公理集合所必备的前提条件。

希尔伯特《几何基础》的结束语,证明了希尔伯特是现代数学公理化发展浪潮的先行者。

坦率地说,《几何基础》结束语并不长,只有5页纸,但是,希尔伯特明确地指出了20世纪数学公理化发展的大方向,

袁萌  陈启清   3月17日

附件:希尔伯特《几何基础》的结束语英文原文(pp83-87)

CONCLUSION.

The preceding work treats essentially of the problems of the euclidean geometry only; that is to say, it is a discussion of the questions which present themselves when we admit the validity of the axiom of parallels. It is none the less important to discuss the principles and the fundamental theorems when we disregard the axiom of parallels. We have thus excluded from our study the important question as to whether it is possible to construct a geometry in a logical manner, without introducing the notion of the plane and the straight line, by means of only points as elements, making use of the idea of groups of transformations, or employing the idea of distance. This last question has recently been the subject of considerable study, due to the fundamental and proli c worksofSophusLie. However,forthecompleteelucidationofthisquestion,itwouldbe well to divide into several parts the axiom of Lie, that space is a numerical multiplicity. First of all, it would seem to me desirable to discuss thoroughly the hypothesis of Lie, that functions which produce transformations are not only continuous, but may also be differentiated. As to myself, it does not seem to me probable that the geometrical axioms included in the condition for the possibility of differentiation are all necessary. In the treatment of all questions of this character, I believe the methods and the principles employed in the preceding work will be of value. As an example, let me call attention to an investigation undertaken at my suggestion by Mr. Dehn, and which has already appeared.19 In this article, he has discussed the known theorems of Legendre concerning the sum of the angles of a triangle, in the demonstration of which that geometer made use of the idea of continuity. The investigation of Mr. Dehn rests upon the axioms of connection, of order, and of congruence; that is to say, upon the axioms of groups I, II, IV. However, the axiom of parallels and the axiom of Archimedes are excluded. Moreover, the axioms of order are stated in a more general manner than in the present work, and in substance as follows: Among four points A,B,C,D of a straight line, there are always two, for example A,C, which are separated from the other two and conversely. Five points A,B,C,D,E upon a straight line may always be so arranged that A,C shall be separated from B,E and from B,D. Consequently, A,D are always separated from B,E and from C,E, etc. The (elliptic) geometry of Riemann, which we have not considered in the present work, is in this way not necessarily excluded. Upon the basis of the axioms of connection, order, and congruence, that is to say, the axioms I, II, IV, we may introduce, in the well known manner, the elements called ideal,—-ideal points, ideal straight lines, and ideal planes. Having done this, Mr. Dehn demonstrates the following theorem.
If, with the exception of the straight line t and the points lying upon it, we regard allofthestraightlinesandallofthepoints(idealorreal)ofaplaneastheelements 19Math. Annalen, Vol. 53 (1900).
84
of a new geometry, we may then de ne a new kind of congruence so that all of the axioms of connection, order, and congruence, as well as the axiom of Euclid, shall be ful lled. In this new geometry, the straight line t takes the place of the straight line at in nity.
Thiseuclideangeometry,superimposeduponthenon-euclideanplane,maybecalled a pseudo-geometry and the new kind of congruence a pseudo-congruence. By aid of the preceding theorem, we may now introduce an algebra of segments relating to the plane and depending upon the developments made in §15, pp. 29–32. Thisalgebraofsegmentspermitsthedemonstrationofthefollowingimportanttheorem:
If, in any triangle whatever, the sum of the angles is greater than, equal to, or less than, two right angles, then the same is true for all triangles.
The case where the sum of the angles is equal to two right angles gives the well known theorem of Legendre. However, in his demonstration, Legendre makes use of continuity. Mr. Dehn then discusses the connection between the three different hypotheses relative to the sum of the angles and the three hypotheses relative to parallels. He arrives in this manner at the following remarkable propositions.
Upon the hypothesis that through a given point we may draw an in nity of lines parallel to a given straight line, it does not follow, when we exclude the axiom of Archimedes, that the sum of the angles of a triangle is less than two right angles, but on the contrary, this sum may be (a) greater than two right angles, or (b) equal to two right angles.
In order to demonstrate part (a) of this theorem, Mr. Dehn constructs a geometry where we may draw through a point an in nity of lines parallel to a given straight line and where, moreover, all of the theorems of Riemann’s (elliptic) geometry are valid. This geometry may be called non-legendrian, for it is in contradiction with that theorem of Legendre by virtue of which the sum of the angles a triangle is never greater than two right angles. From the existence of this non-legendrian geometry, it follows at once that it is impossible to demonstrate the theorem of Legendre just mentioned without employing the axiom of Archimedes, and in fact, Legendre made use of continuity in his demonstration of this theorem. For the demonstration of case (b), Mr. Dehn constructs a geometry where the axiom of parallels does not hold, but where, nevertheless, all of the theorems of the euclidean geometry are valid. Then, we have the sum of the angles of a triangle equal to two right angles. There exist also similar triangles, and the extremities of the perpendiculars having the same length and their bases upon a straight line all lie upon the same straight line, etc. The existence of this geometry shows that, if we disregard the axiom
85
of Archimedes, the axiom of parallels cannot be replaced by any of the propositions which we usually regard as equivalent to it. This new geometry may be called a semi-euclidean geometry. As in the case of the non-legendrian geometry, it is clear that the semi-euclidean geometry is at the same time a non-archimedean geometry. Mr. Dehn  nally arrives at the following surprising theorem:
Upon the hypothesis that there exists no parallel, it follows that the sum of the angles of a triangle is greater than two right angles.
This theorem shows that, with respect to the axiom of Archimedes, the two noneuclidean hypotheses concerning parallels act very differently. We may combine the preceding results in the following table.
THOUGH A GIVEN POINT, WE MAY DRAW
THE SUM OF NO PARALLELS ONE PARALLEL AN INFINITY OF PARALLELS THE ANGLES TO A TO A TO A STRAIGHT LINE OF A TRIANGLE IS STRAIGHT LINE STRAIGHT LINE
> 2 right Riemann’s This case is Non-legendrian geometry angles (elliptic) geometry impossible
< 2 right This case is Euclidean Semi-euclidean geometry angles impossible (parabolic) geometry
= 2 right This case is This case is Geometry of Lobatschewski angles impossible impossible (hyperbolic)
However, as I have already remarked, the present work is rather a critical investigationoftheprinciplesoftheeuclideangeometry. Inthisinvestigation,wehavetakenasa guidethefollowingfundamentalprinciple; viz.,tomakethediscussionofeachquestion of such a character as to examine at the same time whether or not it is possible to answer this question by following out a previously determined method and by employing certain limited means. This fundamental rule seems to me to contain a general law and to conform to the nature of things. In fact, whenever in our mathematical investigations we encounter a problem or suspect the existence of a theorem, our reason is satis ed only when we possess a complete solution of the problem or a rigorous demonstration of the theorem, or, indeed, when we see clearly the reason of the impossibility of the success and, consequently, the necessity of failure. Thus, in the modern mathematics, the question of the impossibility of solution of certain problems plays an important role, and the attempts made to answer such questions have often been the occasion of discovering new and fruitful  elds for research. WerecallinthisconnectionthedemonstrationbyAbeloftheimpossibilityofsolvingan equation of the  fth degree by means of radicals, as also the discovery of the impossibility of demonstrating the axiom of parallels, and,  nally, the theorems of Hermite and Lindeman concerning the impossibility of constructing by algebraic means the numbers e and π.
86
This fundamental principle, which we ought to bear in mind when we come to discuss the principles underlying the impossibility of demonstrations, is intimately connectedwiththeconditionforthe“purity”ofmethodsindemonstration, whichinrecent times has been considered of the highest importance by many mathematicians. The foundation of this condition is nothing else than a subjective conception of the fundamental principle given above. In fact, the preceding geometrical study attempts, in general, to explain what are the axioms, hypotheses, or means, necessary to the demonstration of a truth of elementary geometry, and it only remains now for us to judge from the point of view in which we place ourselves as to

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REAdMe.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看REAdMe.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看READme.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值