非阿基米德有序域:超实数

非阿基米德有序域:超实数
   在古希腊时代,阿基米德原理(等价于不存在无穷小量)盛行,至今,在我们国内仍然流传,不肯退出历史舞台。
   1960年,鲁宾逊证明非阿基米德有序域的存在性,突破了长久以来的阿基米德思想“紧箍咒”,极大地解放了人们的数学思想
   我们不明白,为什么有人偏爱数学老古董?现在是什么时代了?
袁萌  陈启清  8月12日
附件:(非阿基米德有序域)
Non-Archimedean ordered field
In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational functions with real coefficients with a suitable order. 
Definition
The Archimedean property is a property of certain ordered fields such as the rational numbers or the real numbers, stating that every two elements are within an integer multiple of each other. If a field contains two positive elements x < y for which this is not true, then x/y must be an infinitesimal, greater than zero but smaller than any integer unit fraction. Therefore, the negation of the Archimedean property is equivalent to the existence of infinitesimals. 
Applications
Hyperreal fields, non-Archimedean ordered fields containing the real numbers as a subfield, may be used to provide a mathematical foundation for non-standard analysis. 
Max Dehn used the Dehn field, an example of a non-Archimedean ordered field, to construct non-Euclidean geometries in which the parallel postulate fails to be true but nevertheless triangles have angles summing to π.[1][dubious – discuss] 
The field of rational functions over 
R {\displaystyle \mathbb {R} } 
 can be used to construct an ordered field which is complete (in the sense of convergence of Cauchy sequences) but is not the real numbers.[2] This completion can be described as the field of formal Laurent series over 
R {\displaystyle \mathbb {R} } 
. Sometimes the term complete is used to mean that the least upper bound property holds. With this meaning of complete there are no complete non-Archimedean ordered fields. The subtle distinction between these two uses of the word complete is occasionally a source of confusion. 
References
^ Dehn, Max (1900), "Die Legendre'schen Sätze über die Winkelsumme im Dreieck", Mathematische Annalen, 53 (3): 404–439, doi:10.1007/BF01448980, ISSN 0025-5831, JFM 31.0471.01. 
^ Counterexamples in Analysis by Bernard R. Gelbaum and John M. H. Olmsted, Chapter 1, Example 7, page 17. 
hide
vte
Infinitesimals
History
AdequalityLeibniz's notationIntegral symbolCriticism of non-standard analysisThe AnalystThe Method of Mechanical TheoremsCavalieri's principleMethod of indivisibles

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值