数学分析研究的基本对象是定义在实数集上的函数. 为此,我们先简要叙述实数的有关概念.
在中学数学课程中, 我们知道实数由有理数与无理数两部分组成.
- 有理数可用分数形式 p q ( p , q \dfrac{p}{q}(p, q qp(p,q 为整数, q ≠ 0 ) q \neq 0) q=0) 表示,也可用有限十进小数或无限十进循环小数来表示;
- 而无限十进不循环小数则称为无理数.
有理数和无理数统称为实数.
为了以下讨论的需要, 我们把有限小数 (包括整数) 也表示为无限小数.
对此我们作如下规定: 对于正有限小数 (包括正整数) x x x, 当 x = a 0 . a 1 a 2 ⋯ a n x=a_{0} . a_{1} a_{2} \cdots a_{n} x=a0.a1a2⋯an 时, 其中 0 ⩽ a i ⩽ 9 , i = 0 \leqslant a_{i} \leqslant 9, i= 0⩽ai⩽9,i= 1 , 2 , ⋯ , n , a n ≠ 0 , a 0 1,2, \cdots, n, a_{n} \neq 0, a_{0} 1,2,⋯,n,an=0,a0 为非负整数, 记
x = a 0 . a 1 a 2 ⋯ ( a n − 1 ) 9999 ⋯ , x=a_{0} .a_{1} a_{2} \cdots\left(a_{n}-1\right) 9999 \cdots \text {, } x=a0.a1a2⋯(an−1)9999⋯,
而当 x = a 0 x=a_{0} x=a0 为正整数时, 则记
x = ( a 0 − 1 ) . 9999 ⋯ , x=\left(a_{0}-1\right) .9999 \cdots, x=(a0−1).9999⋯,
例如 2.001 记为 2.0009999 ⋯ 2.0009999 \cdots 2.0009999⋯; 对于负有限小数(包括负整数) y y y,则先将 − y -y −y 表示为无限小数, 再在所得无限小数之前加负号, 例如 -8 记为 − 7.9999 ⋯ -7.9999 \cdots −7.9999⋯; 又规定数 0 表示为 0.0000 ⋯ 0.0000 \cdots 0.0000⋯ 于是,任何实数都可用一个确定的无限小数来表示.
我们已经熟知比较两个有理数大小的方法. 现定义两个实数的大小关系.
有理数和无理数统称为实数, 实数是一个阿基米德有序域. 这一名词有三层含义.
- 第一层, 数域指的是集合 F F F 含有两种运算" + “和” .",对 ∀ a , b , c ∈ F \forall a, b, c \in F ∀a,b,c∈F
(1) 加法交换律: a + b = b + a a+b=b+a a+b=b+a;
(2) 加法结合律: ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c);
(3) F F F 中存在零元素, 记为 0 , 使得对 ∀ a ∈ F , a + 0 = a \forall a \in F, a+0=a ∀a∈F,a+0=a;
(4) ∀ a ∈ F \forall a \in F ∀a∈F 存在反元素 ( − a ) ∈ F , a + ( − a ) = 0 (-a) \in F, a+(-a)=0 (−a)∈F,a+(−a)=0.
(5) 乘法交换律: a ⋅ b = b ⋅ a a \cdot b=b \cdot a a⋅b=b⋅a;
(6) 乘法结合律: ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c=a \cdot(b \cdot c) (a⋅b)⋅c=a⋅(b⋅c);
(7) F F F 中存在单位元素, 记为e, 使得对 ∀ a ∈ F , a ⋅ e = a \forall a \in F, a \cdot e=a ∀a∈F,a⋅e=a;
(8) ∀ a ∈ F \ { 0 } \forall a \in F \backslash\{0\} ∀a∈F\{ 0} 存在逆元素 a − 1 ∈ F , a ⋅ a − 1 = e a^{-1} \in F, a \cdot a^{-1}=e a