数学分析(一)-实数集与函数1-实数1:实数及其性质【实数ℝ=有理数(①分数、②有限小数、③无限循环小数)+无理数(无限不循环小数)】【不存在最大实数】【ℝ具有稠密性:任何两不相等实数间必有另一实数】

数学分析的基础是实数集上的函数,实数包括有理数(分数、有限小数、无限循环小数)和无理数(无限不循环小数)。实数具有阿基米德性,任何两条线段都可以通过连续截取达到长度比较。实数的大小关系可以通过无限小数的比较来定义,并且实数集是稠密的,任何两个不相等的实数间总能找到另一个实数。此外,实数集对加、减、乘、除运算封闭,具有传递性和阿基米德性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学分析研究的基本对象是定义在实数集上的函数. 为此,我们先简要叙述实数的有关概念.


在中学数学课程中, 我们知道实数由有理数与无理数两部分组成.

  • 有理数可用分数形式 p q ( p , q \dfrac{p}{q}(p, q qp(p,q 为整数, q ≠ 0 ) q \neq 0) q=0) 表示,也可用有限十进小数或无限十进循环小数来表示;
  • 而无限十进不循环小数则称为无理数.

有理数和无理数统称为实数.

为了以下讨论的需要, 我们把有限小数 (包括整数) 也表示为无限小数.

对此我们作如下规定: 对于正有限小数 (包括正整数) x x x, 当 x = a 0 . a 1 a 2 ⋯ a n x=a_{0} . a_{1} a_{2} \cdots a_{n} x=a0.a1a2an 时, 其中 0 ⩽ a i ⩽ 9 , i = 0 \leqslant a_{i} \leqslant 9, i= 0ai9,i= 1 , 2 , ⋯   , n , a n ≠ 0 , a 0 1,2, \cdots, n, a_{n} \neq 0, a_{0} 1,2,,n,an=0,a0 为非负整数, 记

x = a 0 . a 1 a 2 ⋯ ( a n − 1 ) 9999 ⋯ ,  x=a_{0} .a_{1} a_{2} \cdots\left(a_{n}-1\right) 9999 \cdots \text {, } x=a0.a1a2(an1)9999

而当 x = a 0 x=a_{0} x=a0 为正整数时, 则记

x = ( a 0 − 1 ) . 9999 ⋯   , x=\left(a_{0}-1\right) .9999 \cdots, x=(a01).9999,

例如 2.001 记为 2.0009999 ⋯ 2.0009999 \cdots 2.0009999; 对于负有限小数(包括负整数) y y y,则先将 − y -y y 表示为无限小数, 再在所得无限小数之前加负号, 例如 -8 记为 − 7.9999 ⋯ -7.9999 \cdots 7.9999; 又规定数 0 表示为 0.0000 ⋯ 0.0000 \cdots 0.0000 于是,任何实数都可用一个确定的无限小数来表示.

我们已经熟知比较两个有理数大小的方法. 现定义两个实数的大小关系.


有理数和无理数统称为实数, 实数是一个阿基米德有序域. 这一名词有三层含义.

  • 第一层, 数域指的是集合 F F F 含有两种运算" + “和” .",对 ∀ a , b , c ∈ F \forall a, b, c \in F a,b,cF
    (1) 加法交换律: a + b = b + a a+b=b+a a+b=b+a;
    (2) 加法结合律: ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c);
    (3) F F F 中存在零元素, 记为 0 , 使得对 ∀ a ∈ F , a + 0 = a \forall a \in F, a+0=a aF,a+0=a;
    (4) ∀ a ∈ F \forall a \in F aF 存在反元素 ( − a ) ∈ F , a + ( − a ) = 0 (-a) \in F, a+(-a)=0 (a)F,a+(a)=0.
    (5) 乘法交换律: a ⋅ b = b ⋅ a a \cdot b=b \cdot a ab=ba;
    (6) 乘法结合律: ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c=a \cdot(b \cdot c) (ab)c=a(bc);
    (7) F F F 中存在单位元素, 记为e, 使得对 ∀ a ∈ F , a ⋅ e = a \forall a \in F, a \cdot e=a aF,ae=a;
    (8) ∀ a ∈ F \ { 0 } \forall a \in F \backslash\{0\} aF\{ 0} 存在逆元素 a − 1 ∈ F , a ⋅ a − 1 = e a^{-1} \in F, a \cdot a^{-1}=e a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值