如何入门推荐系统

前言

推荐系统是一个很工程的领域,相比NLP,CV等理论性较强的AI方向入门难度要低一点。推荐的工作大体可以分为召回排序,首先从数以万计的items中召回用户可能感兴趣的百万级的items,这里的数量级按照items的数量级来决定,items有可能是音乐(网易云音乐)、电影书籍(豆瓣),商品(淘宝京东)等等;然后从对筛选过一遍的items做排序。当然其实再往细说还有精排粗排等流程,这里作为知识普及就不细说了。

召回主要通过多路召回,比如MostPoP(选出平台最受用户喜爱商品top10,推荐给每一个用户),sequence recommendation(通过用户的历史购买行为推荐),knowledge graph(将平台的商品做成知识图谱)等方式,通过不同的方法(多路的意义所在)来筛选商品。

排序主要是CTR预估的一套,因为推荐的最终目的是要提高指标,有一种指标是CTR点击通过率(Click-Through-Rate)。有了召回阶段筛选出来的商品之后,通过模型预测用户会点击该商品的概率,然后选出分数最高的一个或几个来推荐给用户。

1. 入门书籍

推荐系统的入门书籍有很多,其他答主都回答了,这里我再推荐一本神书王喆的《深度学习推荐系统》,2020年才出版,介绍的算法和模型都和前沿,京东当当搞活动的时候50+可以入手。

2. 需要学习的技术

以上这些都是推荐系统的基础知识,掌握这些可以找一个像样的实习了。不过正如前文说到,推荐系统很偏工程,所以还有很多进阶的知识需要掌握,但这些知识往往都只能在企业的实践中获得,这里我介绍几个但不详细展开,因为每个企业都有各自的处理流程。

3. 进阶知识

  1. 推荐系统中,冷启动是急需解决的一个问题,就是当你的用户、商品是新加入的,或者平台是新成立的,没有历史数据,怎么为用户做推荐。学术届很多人都在研究,我们无需非常深入,但是也需要有所了解
  2. 对于工业界来说,推荐系统最重要的不是模型,而是特征工程,了解特征工程的方法对于入门推荐系统是很重要的
  3. 推荐系统是一个很依赖实时性的领域,有的时候为了效率我们不会用到太复杂的模型和大量的历史数据,对于推荐系统如何在线上运作,这是我们需要了解的
  4. 短视频的推荐,购物网站的推荐,新闻的推荐等不同领域中的推荐方法是截然不同的,他们各自有什么区别,需要我们去了解。

以上就是我对如何入门推荐系统的建议。其实推荐、广告、搜索三个领域是很相近的,他们都有召回排序的流程,也都很NLP密切相关。所以,如果你已经拥有了前文所介绍的所有知识储备,欢迎来到广告、搜索、NLP领域探探路,这里获得的知识可能对推荐很有帮助喔!

微信关注我,带你走进算法的世界!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值