线性代数(第三章—)向量

第三章向量(vector)

3.1 n维向量及其运算

● n维向量:n个数 a 1 , a 2 ⋯ a n a_1,a_2\cdots a_n a1,a2an 组成的有序数组 a 1 , a 2 , ⋯ a n {a_1,a_2,\cdots a_n} a1,a2,an。 n个数被称为n个分量。
● 向量的符号就是用 α    β    γ \alpha \ \ \beta\ \ \gamma α  β  γ 表示的。
● 相反向量,即每个维度都取相反数的向量。
● 相等向量,即每个维度对应相等的同维向量。
● 向量的运算:加 、数乘、减、
● 向量的运算定律:交换,分配,向量加上其相反向量等于0向量 .
k α = 0 ⇔ k = 0 ( 数字 0 )    o r    α = 0 ( 向量 0 ) k\alpha =0 \Leftrightarrow k=0(数字0)\ \ or \ \ \alpha=0(向量0) kα=0k=0(数字0)  or  α=0(向量0) 但是两个向量之积等于0,不能推出任意一个向量的结果是0.

3.2 向量间的线性关系

● 线性组合:
β , α 1 , α 2 ⋯ α n \beta ,\alpha_1,\alpha_2\cdots \alpha_n β,α1,α2αn 是m维向量。若存在 k 1 , k 2 ⋯ k n k_1,k_2\cdots k_n k1,k2kn 使得 β = k 1 α 1 + k 2 α 2 + ⋯ + k n α n \beta=k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n β=k1α1+k2α2++knαn 组合表示。
系数可以全取0 。
● 零向量可以由任意向量组来表示。
● 向量组中任一向量可以由向量组表示。
● 任意向量可以由 ε 1 = { 1 , 0 , 0 , ⋯   , 0 }    ε 2 = { 0 , 1 , 0 , ⋯   , 0 }    ⋯    ε n = { 0 , 0 , ⋯   , 1 } \varepsilon_1=\{1,0,0,\cdots,0\}\ \ \varepsilon_2=\{0,1,0,\cdots,0\}\ \ \cdots \ \ \varepsilon_n=\{0,0,\cdots,1\} ε1={1,0,0,,0}  ε2={0,1,0,,0}    εn={0,0,,1}
● 不管给的向量是行还是列, α 1 ⋯ α n 按列均做成方程组的系数, β 按列做右端常数项 \alpha_1\cdots\alpha_n按列均做成方程组的系数,\beta按列做右端常数项 α1αn按列均做成方程组的系数,β按列做右端常数项
● 组合 ⇔ \Leftrightarrow 方程组有解
● 向量组的等价
两个向量组{ α 1 ⋯ α n \alpha_1\cdots \alpha_n α1αn} 、{ β 1 ⋯ β n \beta_1\cdots\beta_n β1βn} 同维

如果对于其中任意一个向量组中的一个向量,都可以用另一个向量组中的向量来表示。

即两个向量组都可以相互线性组合表示。 { α 1 ⋯ α n } ≅ { β 1 ⋯ β n } \{\alpha_1\cdots\alpha_n\}\cong \{\beta_1\cdots\beta_n\} {α1αn}{β1βn}

● 性质
1.反身性,向量组和它自己是等价的。
2.对称性,向量组x和向量组y等价,那么向量组y和向量组x等价。
3.传递性, { α 1 ⋯ α n } ≅ { β 1 ⋯ β n } \{\alpha_1\cdots\alpha_n\}\cong\{\beta_1\cdots\beta_n\} {α1αn}{β1βn} { β 1 ⋯ β n } ≅ { γ 1 ⋯ γ n } \{\beta_1\cdots\beta_n\}\cong\{\gamma_1\cdots\gamma_n\} {β1βn}{γ1γn} 那么 { α 1 ⋯ α n } ≅ { γ 1 ⋯ γ n } \{\alpha_1\cdots\alpha_n\}\cong\{\gamma_1\cdots\gamma_n\} {α1αn}{γ1γn}

3.3.1 线性相关与无关

● 线性相关:
α 1 ⋯ α n 是 n 个 m 维向量,如果存在一组不为 0 的 k 1 , k 2 , ⋯   , k n , 使得   k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 那么说明 α 1 ⋯ α n 是线性相关 \alpha_1\cdots\alpha_n是n个m维向量,如果存在一组不为0的k_1,k_2,\cdots,k_n,\\使得 \ \ k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0 那么说明\alpha_1\cdots\alpha_n是线性相关 α1αnnm维向量,如果存在一组不为0k1,k2,,kn,使得  k1α1+k2α2++knαn=0那么说明α1αn是线性相关
● 线性无关:
1.不相关
2.找不到一组不全为0 的 k 1 , ⋯   , k n k_1,\cdots,k_n k1,,kn 使得 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0 k1α1+k2α2++knαn=0 成立。
3. k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0 k1α1+k2α2++knαn=0 成立, k 1 , ⋯   , k n k_1,\cdots,k_n k1,,kn必全为0 。

  1. 向量组中有两个向量成比例,该向量组一定相关。
  2. 含零向量的任意向量组必定相关
  3. 一个零向量必定相关
  4. 一个非零向量必定无关。
  5. 一个向量

● 部分组线性相关,整体组线性相关。逆否命题:整体组线性无关,部分组线性无关。
● 线性无关的向量组,接长向量组也线性无关。线性相关的向量组,截短向量组也线性相关。
● n个n维向量,组成的行列式的值不等于0,那么这个向量组线性无关。行列式的值等于0,向量组线性相关。
● n个单位向量是线性无关的。
● 两个例题:
在这里插入图片描述
在这里插入图片描述

● 定理: α 1 ⋯ α s 相关 ⇔ 至少一个向量可由其余向量表示 \alpha_1\cdots\alpha_s相关\Leftrightarrow至少一个向量可由其余向量表示 α1αs相关至少一个向量可由其余向量表示

α 1 ⋯ α s 线性无关 α 1 ⋯ α s β 线性相关 \alpha_1\cdots\alpha_s线性无关\alpha_1\cdots\alpha_s\beta线性相关 α1αs线性无关α1αsβ线性相关 β 可由 α 1 ⋯ α s 唯一表示 \beta可由\alpha_1\cdots\alpha_s唯一表示 β可由α1αs唯一表示
线性表示:因为 α 1 ⋯ α s β 线性相关 \alpha_1\cdots\alpha_s\beta线性相关 α1αsβ线性相关所以有一组不全为0的 k 1 ⋯ k n + 1 k_1\cdots k_n+1 k1kn+1 使得 k 1 α 1 + ⋯ + k n + 1 α n + 1 = 0 k_1\alpha_1+\cdots+k_{n+1}\alpha_{n+1}=0 k1α1++kn+1αn+1=0
假设 k n + 1 = 0 ,     那么 k 1 α 1 + ⋯ + k n α n 应该不等于 0 , k_{n+1}=0,\ \ \ \ 那么k_1\alpha_1+\cdots+k_{n}\alpha_{n}应该不等于0, kn+1=0,    那么k1α1++knαn应该不等于0
但是由于 α 1 ⋯ α s 线性无关 , 即 k 1 α 1 + ⋯ + k n α n = 0 \alpha_1\cdots\alpha_s线性无关,即k_1\alpha_1+\cdots+k_{n}\alpha_{n}=0 α1αs线性无关,k1α1++knαn=0 出现矛盾,所以 k n + 1 = 0 不成立 k_{n+1}=0不成立 kn+1=0不成立
β = − k 1 α 1 + ⋯ + k n α n k n + 1 \beta=-\frac{k_1\alpha_1+\cdots+k_{n}\alpha_{n}}{k_{n+1}} β=kn+1k1α1++knαn
唯一性:假设 β = m 1 α 1 + ⋯ + m s α s 另一个 β = n 1 α 1 + ⋯ + n s α s \beta=m_1\alpha_1+\cdots+m_s\alpha_s另一个\beta=n_1\alpha_1+\cdots+n_s\alpha_s β=m1α1++msαs另一个β=n1α1++nsαs
那么由于线性无关, ( m 1 − n 1 ) α 1 + ⋯ + ( m s − n s ) α s = 0 (m_1-n_1)\alpha_1+\cdots+(m_s-n_s)\alpha_s=0 (m1n1)α1++(msns)αs=0
所以 ( m 1 − n 1 ) = ⋯ = ( m s − n s ) = 0 (m_1-n_1)=\cdots=(m_s-n_s)=0 (m1n1)==(msns)=0 ,所以 m i = n i m_i=n_i mi=ni

● 替换, α 1 ⋯ α s 线性无关,可以由 β 1 ⋯ β s 表示,那么 s ≤ t \alpha_1\cdots\alpha_s线性无关,可以由\beta_1\cdots\beta_s表示,那么s\leq t α1αs线性无关,可以由β1βs表示,那么st
逆否命题: α 1 ⋯ α s 可由 β 1 ⋯ β s 表示, s > t , 那么 α 1 ⋯ α s 相关 \alpha_1\cdots\alpha_s可由\beta_1\cdots\beta_s表示,s>t,那么\alpha_1\cdots\alpha_s相关 α1αs可由β1βs表示,s>t,那么α1αs相关
m>n,m个n维向量线性相关,向量个数>向量维数。
n+1个n维向量线性相关。
推论:两个等价的线性无关向量组含向量的个数相同。

3.3.2 向量组的秩

● 极大线性无关组:
在这里插入图片描述

● 全是0的向量组没有最大线性无关组。
● 一个线性无关的向量组的最大线性无关组就是它本身。
● 任何一个线性向量组和它的最大线性无关组是等价的。同一个线性向量组的两个最大线性无关组是等价的 。
● 极大线性无关组不唯一,但是含的向量的个数是相等的。
● 向量的秩:极大无关组含向量的个数。 r ( α 1 , α 2 , ⋯   , α s ) r(\alpha_1,\alpha_2,\cdots,\alpha_s) r(α1,α2,,αs)
1 ≤ r ( α 1 , α 2 , ⋯   , α s ) ≤ m i n { 向量的个数,向量的维数 } 1\leq r(\alpha_1,\alpha_2,\cdots,\alpha_s)\leq min\{向量的个数,向量的维数\} 1r(α1,α2,,αs)min{向量的个数,向量的维数}
如果线性向量组线性无关 ⇔ r = s \Leftrightarrow r=s r=s
如果线性向量组线性相关 ⇔ r < s \Leftrightarrow r<s r<s

定理: α 1 ⋯ α s 可由 β 1 ⋯ β t 来表示 \alpha_1\cdots\alpha_s可由\beta_1\cdots\beta_t来表示 α1αs可由β1βt来表示 那么 r ( α 1 ⋯ α s ) ≤ r ( β 1 ⋯ β t ) r(\alpha_1\cdots\alpha_s)\leq r(\beta_1\cdots\beta_t) r(α1αs)r(β1βt)

3.3.3 矩阵的行秩与列秩

● 定义:矩阵的几行组成的向量组的秩就是矩阵的行秩;矩阵的几列组成的向量组的秩就是矩阵的列秩。
● 矩阵的行秩=矩阵的列秩=矩阵的秩

定理: r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(AB)\leq min\{r(A),r(B)\} r(AB)min{r(A),r(B)}

● 矩阵的初等行变换不改变矩阵列向量的线性关系
● 例题:

求4个向量组成的极大线性无关组,并给出其余向量用该极大线性无关组来表示的线性表达式

● 不管是向量是行是列,均按列构成矩阵。 A = [ 1 2 − 2 3 − 2 − 4 4 − 6 2 8 − 2 0 − 1 0 3 − 6 ] A=\left[ \begin{matrix} 1&2&-2&3\\ -2&-4&4&-6\\ 2&8&-2&0\\ -1&0&3&-6\end{matrix} \right] A= 1221248024233606
● 只做初等行变换,化简成行简化阶梯型。 A = [ 1 0 − 3 6 0 1 1 2 − 3 2 0 0 0 0 0 0 0 0 ] A=\left[ \begin{matrix} 1&0&-3&6\\ 0&1&\frac{1}{2}&-\frac{3}{2}\\ 0&0&0&0\\ 0&0&0&0\end{matrix} \right] A= 100001003210062300
● 首非零元所在的列,做成极大线性无关组。
● 其余向量表示系数直接写出来。 β 3 ( 第 3 列 ) = − 3 β 1 + 1 2 β 2    β 4 ( 第 4 列 ) = 6 β 1 − 3 2 β 2 \beta_3(第3列)=-3\beta_1+\frac{1}{2}\beta_2\ \ \beta_4(第4列)=6\beta_1-\frac{3}{2}\beta_2 β3(3)=3β1+21β2  β4(4)=6β123β2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远歌已逝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值