线性代数(第四章)线性方程组

第四章 线性方程组

4.1 线性方程组

● 由二元一次方程的消元法,交换两个方程,用非零数乘以某个方程,某方程乘以k倍加到另一方程。这个与矩阵的初等行变换相似。
● 将上面方程组的未知数去掉,将系数写在一个矩阵中。就可以表示该方程组。并可以通过矩阵的初等行变换求解。

4.2 线性方程组有解的判定

● 系数矩阵,将方程组所以方程等号左边的系数写成一个矩阵。
● 增广系数矩阵(记作 A ˉ \bar A Aˉ),在系数矩阵的右侧加方程组等号右侧的数字(只有一列)。
● 向量表达式,每个未知数与该未知数的系数组成的向量的乘积之和等于方程组等号右侧数字组成的矩阵。
● 判断方程组的系数矩阵和增广型系数矩阵的秩的关系便可以判断方程组有解与否。
在这里插入图片描述

● 判断方程组系数矩阵和增广型系数矩阵的秩是否相等的步骤
1.写出增广型系数矩阵
2.只做初等行变换,将矩阵转换成阶梯型
3.阶梯型中虚线左右非零行行数是否等于
4.不管全为0的行,左边首非零元留在左边,其他变量挪到右边。得到一般解
5.如果是无穷型,那么为零的未知数就是自由未知量。
● 在矩阵中出现参数的时候,一定注意参数不能放在分母。

4.3 齐次线性方程组

● 齐次方程组指的是方程组的等号右边都是0.
● 齐次线性方程组一定有解,至少有0解。
r ( A ) = r ( A ˉ ) r(A)=r(\bar A) r(A)=r(Aˉ) 有唯一的零解 ⇔ \Leftrightarrow r(A)=n
有非零解 ⇔ r ( A ) < n \Leftrightarrow r(A)<n r(A)<n
方程个数小于未知数个数,有非零解。 r ( A ) < m i n ( m , n ) < n r(A)<min{(m,n)}<n r(A)<min(m,n)<n
方程个数等于未知数个数,有非零解 ⇔ ∣ A ∣ = 0 ⇔ r ( A ) < n ⇔ A 不可逆 \Leftrightarrow \begin{vmatrix}A \end{vmatrix}=0 \Leftrightarrow r(A)<n\Leftrightarrow A不可逆 A =0r(A)<nA不可逆

4.4.1 齐次方程组解的结构

● 对于 齐次方程组
1. η 1 和 η 2 是 A x = 0 的解,那么 η 1 + η 2 也是它的解 A ( η 1 + η 2 ) = A η 1 + A η 2 = 0 + 0 = 0 \eta_1和\eta_2是Ax=0的解,那么\eta_1+\eta_2也是它的解\\A(\eta_1+\eta_2)=A\eta_1+A\eta_2=0+0=0 η1η2Ax=0的解,那么η1+η2也是它的解A(η1+η2)=Aη1+Aη2=0+0=0
2. η 是 A x = 0 的解, c η 也是解,那么 A ( c η ) = c A η = c ⋅ 0 = 0 \eta是Ax=0的解,c\eta也是解,那么A(c\eta)=cA\eta=c\cdot0=0 ηAx=0的解,也是解,那么A()=cAη=c0=0
在这里插入图片描述

● 基础解系:1. η 1 ⋯ η s 线性无关 \eta_1\cdots\eta_s线性无关 η1ηs线性无关 2.任意一个解都可以由 η 1 ⋯ η s \eta_1\cdots\eta_s η1ηs来表示
在这里插入图片描述

● 基础解系就是极大线性无关组。
● 将矩阵进行初等行变换,然后化简成行简化阶梯型。
自由未知量取最大线性无关组
● 基础解系中解的个数是 n − r ( A ) n-r(A) nr(A)个。
● 结论: A m × n 、 B n × s    A B = 0 n × s   那么: r ( A ) + r ( B ) ≤ n A_{m\times n}、B_{n\times s} \ \ AB=0_{n\times s}\ \ 那么: r(A)+r(B)\leq n Am×nBn×s  AB=0n×s  那么:r(A)+r(B)n证明过程,将矩阵B分为s个向量,这个地方之所以要分块是因为要凑出矩阵乘以向量等于零(齐次线性方程组);然后如第二、三行所示, A B i = 0 AB_i=0 ABi=0 这个就是齐次线性方程组。 之后分类讨论。

4.4.2 非齐次方程组解的结构

● 矩阵乘以向量等于一个 常数 ,就是非齐次方程组 。即Ax=b 令b=0,那么Ax=0就是导出组。
α 1 、 α 2 是 A x = b 的解 , α 1 − α 2 是 A x = 0 的解。 A ( α 1 − α 2 ) = A α 1 − A α 2 = b − b = 0 \alpha_1、\alpha_2是Ax=b的解,\alpha_1-\alpha_2是Ax=0的解。A(\alpha_1-\alpha_2)=A\alpha_1-A\alpha_2=b-b=0 α1α2Ax=b的解,α1α2Ax=0的解。A(α1α2)=Aα1Aα2=bb=0
α 0 是 A x = b 的解, η 是 A x = 0 的解, α 0 + η 是 A x = b 的解 , A ( α 0 + η ) = A α 0 + A η = b + 0 = b \alpha_0是Ax=b的解,\eta是Ax=0的解 ,\alpha_0+\eta是Ax=b的解,A(\alpha_0+\eta)=A\alpha_0+A\eta=b+0=b α0Ax=b的解,ηAx=0的解,α0+ηAx=b的解,A(α0+η)=Aα0+Aη=b+0=b

● 定理: α 0 是 A x = b 的一个解 , η 是 A x = 0 的通解  η = C 1 η 1 + C 2 η 2 + c d o t s + C n − r η n − r , η n − r 是 A x = 0 的基础解系  α 0 + C 1 η 1 + C 2 η 2 + c d o t s + C n − r η n − r 就是 A x = b 的全解 ( 通解 ) \alpha_0是Ax=b的一个解,\eta是Ax=0的通解\ \eta=C_1\eta_1+C_2\eta_2+cdots+C{n-r}\eta{n-r},\eta_{n-r}是Ax=0的基础解系\ \alpha_0+C_1\eta_1+C_2\eta_2+cdots+C{n-r}\eta{n-r}就是Ax=b的全解(通解) α0Ax=b的一个解,ηAx=0的通解 η=C1η1+C2η2+cdots+Cnrηnr,ηnrAx=0的基础解系 α0+C1η1+C2η2+cdots+Cnrηnr就是Ax=b的全解(通解)
● 例题:在这里插入图片描述

所以通解为: ( 13 7 − 4 7 0 0 ) + C 1 ( − 3 7 − 2 7 0 0 ) + C 2 ( − 13 7 − 4 7 0 0 ) \left(\begin{matrix}\frac{13}{7}\\-\frac{4}{7}\\0\\0\end{matrix}\right)+C_1\left(\begin{matrix}-\frac{3}{7}\\-\frac{2}{7}\\0\\0\end{matrix}\right)+C_2\left(\begin{matrix}-\frac{13}{7}\\-\frac{4}{7}\\0\\0\end{matrix}\right) 7137400 +C1 737200 +C2 7137400
● 步骤:
1.写出增广型系数矩阵,只做初等行变换,化为行简化阶梯型
2.非零行的首非零元的1留在左边,其余的移到右边,写出非齐次方程组的通解方程组,指出谁是自由未知量(不在左边是自由未知量)
3.令自由未知量均取0,得到Ax=b的一个特解。
4.令通解方程组右边常数项均为0,得到Ax=0的通解方程组。指出谁是自由未知量,令自由未知量取最大线性无关组,得到Ax=0的基础解系
5.按 α 0 + C 1 η 1 + C 2 η 2 + ⋯ + C n − r η n − r \alpha_0+C_1\eta_1+C_2\eta_2+\cdots+C_{n-r}\eta_{n-r} α0+C1η1+C2η2++Cnrηnr 得出非齐次方程组的通解
● 例题:
四元非齐次方程组的系数矩阵的秩为3, α 1 、 α 2 、 α 3 是方程组的三个解 其中 α 1 = ( 2 , 3 , 4 , 5 ) T , α 2 + α 3 = ( 1 , 2 , 3 , 4 ) T \alpha_1、\alpha_2、\alpha_3是方程组的三个解\\其中\alpha_1=(2,3,4,5)^T,\alpha_2+\alpha_3=(1,2,3,4)^T α1α2α3是方程组的三个解其中α1=(2,3,4,5)T,α2+α3=(1,2,3,4)T
求:通解
解:通解=Ax=b的一个特解+导出组基础解系的线性组合
其中 α 1 , α 2 , α 3 都是特解,但是只有 α 1 给出,所以把 α 1 做特解 \alpha_1,\alpha_2,\alpha_3都是特解,但是只有\alpha_1给出,所以把\alpha_1做特解 α1,α2,α3都是特解,但是只有α1给出,所以把α1做特解
导出组的基础解系的解的个数=n-r 在本题中=4-3=1。
α 1 、 α 2 是 A x = b 的解 , α 1 − α 2 是 A x = 0 的解。 A ( α 1 − α 2 ) = A α 1 − A α 2 = b − b = 0 \alpha_1、\alpha_2是Ax=b的解,\alpha_1-\alpha_2是Ax=0的解。A(\alpha_1-\alpha_2)=A\alpha_1-A\alpha_2=b-b=0 α1α2Ax=b的解,α1α2Ax=0的解。A(α1α2)=Aα1Aα2=bb=0
所以 2 α 1 − α 2 − α 3 就是导出组的基础解系 2\alpha_1-\alpha_2-\alpha_3就是导出组的基础解系 2α1α2α3就是导出组的基础解系

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远歌已逝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值