线性代数(第二章)矩阵

第二章 矩阵(Matrix)

2.1 矩阵的概念

● 具体参考数据结构中的邻接矩阵。行列式与矩阵的区别:
● 行列式本质上是一个数,矩阵本质上是一个数表;
行列式的符号是竖线,矩阵符号是小括号,中括号; 大括号在线性代数中几乎不用。
行列式的行数等于列数,矩阵的形状无要求;
● 实矩阵,复矩阵;所有元素都是实数的,所有元素都是复数的。
● 行矩阵,列矩阵。
● 零矩阵,记作:O
● 把矩阵中的所有元素都取相反数,得到原来矩阵的负矩阵。
● 行数等于列数的矩阵叫方阵。
● 单位阵:主对角线都为1,其他位置是0的矩阵。
● 同型矩阵:行数和列数对应相等的两个矩阵。
● 两个同型矩阵的元素对应位置元素对应相等,就是相等矩阵。

2.2 矩阵的运算

● 同型矩阵才能相加减。
● 对应位置相加减即可。
● 矩阵的数乘:K乘以一个矩阵,用k乘以矩阵的每一个元素。
矩阵的所有元素都有同一个公因子,公因子朝外提一次。与行列式不同。
● 矩阵的乘法:
前提条件,第一个矩阵的列数等于第二个矩阵的行数;
结果矩阵的行数等于第一个矩阵的行数;结果矩阵的列数等于第二个矩阵的列数。
● 口诀:中相等,取两头。
● 矩阵的乘法中:
AB有意义,BA不一定有意义。(A不等于B)
AB = BC,A不等于0, 不能推出 B=C.
AB=0,不能推出A=0 或 B=0;
与零矩阵(符合相乘规则的)相乘都等于0矩阵(相应的结果0矩阵)
● 矩阵的乘法法则:
结合,(AB)C = A(BC)
分配,(A+B)C = AC+BC. C(AB) = CA + CB
K(A+B)=(KA)B=A(KB) K是常数
请添加图片描述

● 幂运算:
A k 1 ⋅ A k 2 = A k 1 + k 2 A^{k_1}\cdot A^{k_2}=A^{k_1+k_2} Ak1Ak2=Ak1+k2
( A k 1 ) k 2 = A k 1 ⋅ k 2 (A^{k_1})^{k_2}=A^{k_1\cdot k2} (Ak1)k2=Ak1k2
一般来说, ( A B ) k ≠ A k ⋅ B k (AB)^k \ne A^k\cdot B^k (AB)k=AkBk ( A + B ) 2 = A 2 + A B + B A + B 2 (A+B)^2=A^2+AB+BA+B^2 (A+B)2=A2+AB+BA+B2
在A是方阵,E是单位阵时, ( A + E ) 2 = A 2 + 2 A E + E 2 (A+E)^2=A^2+2AE+E^2 (A+E)2=A2+2AE+E2
● 矩阵的转置:
概念,i j 互换位置。
性质: $(AT)T=A $ ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( k A ) T = k ⋅ A T (kA)^T=k\cdot A^T (kA)T=kAT ( A B ) T = B T ⋅ A T (AB)^T=B^T\cdot A^T (AB)T=BTAT 不能记反。
( A 1 A 2 A 3 A 4 ) T = A 4 T A 3 T A 2 T A 1 T (A_1A_2A_3A_4)^T = A_4^TA_3^TA_2^TA_1^T (A1A2A3A4)T=A4TA3TA2TA1T
( A + B + C ) T = A T + B T + C T (A+B+C)^T=A^T+B^T+C^T (A+B+C)T=AT+BT+CT

2.3 特殊矩阵(方阵)

● 数量矩阵(特殊的对角型矩阵),
主对角线全为 a(任意数) ,等于a乘以相应的单位阵。
( a E ) B = B ( a E ) = ( a B ) (aE)B=B(aE)=(aB) (aE)B=B(aE)=(aB)
AE=EA=A 第一个E和第二个E不同。
● 对角型,
d i a g ( a 1 a 2 a 3 a 4 ) diag(a_1a_2a_3a_4) diag(a1a2a3a4) 是以 a 1 , a 2 , a 3 , a 4 a_1,a_2,a_3,a_4 a1,a2,a3,a4 为主对角线的对角型矩阵。请添加图片描述

● 三角型:
上三角型,下三角型
对角型既是上三角,又是下三角
数和上三角或下三角的乘积,以及上三角或下三角的和、差、积均是上三角或下三角。
● 对称和反对称:
对称矩阵 a i j = a j i a_{ij}=a_{ji} aij=aji A T = A A^T=A AT=A
两个同阶对称矩阵的和、差、数乘依然是对称的。但是乘积一般不再是对称矩阵。
请添加图片描述

反对称矩阵 a j i = − a j i a_{ji}=-a_{ji} aji=aji ,对称矩阵主对角线没有要求,但是反对称矩阵的主对角线必须都是0;

2.4 逆矩阵

● 永远不要把矩阵放在分母上
● 方阵的行列式 ,
把矩阵的括号换成竖线.
行列式本质上是一个数,矩阵本质上是一个数表。
矩阵有很多属性:特征值、特征向量、行列式等等。
方阵的行列式的性质: ∣ A T ∣ = ∣ A ∣ \begin{vmatrix}A^T\end{vmatrix}=\begin{vmatrix}A\end{vmatrix} AT = A ∣ k A ∣ = k n ∣ A ∣ \begin{vmatrix}kA\end{vmatrix}=k^n\begin{vmatrix}A\end{vmatrix} kA =kn A *
∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix}AB\end{vmatrix}=\begin{vmatrix}A\end{vmatrix}\cdot \begin{vmatrix}B \end{vmatrix} AB = A B 条件:同阶行列式,可以推广到多个行列式。
● 伴随矩阵
只有方阵才有伴随矩阵。
请添加图片描述

伴随矩阵记作: A ∗ A^* A
定理: A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=\begin{vmatrix}A\end{vmatrix}E AA=AA= A E
请添加图片描述

● 由 ∣ A A ∗ ∣ = ∣ A ∣ E \begin{vmatrix}AA^*\end{vmatrix}=\begin{vmatrix}A\end{vmatrix}E AA = A E , ∣ A ∣ ⋅ ∣ A ∗ ∣ = ∣ A ∣ n \begin{vmatrix}A\end{vmatrix}\cdot \begin{vmatrix}A^*\end{vmatrix}=\begin{vmatrix}A\end{vmatrix}^n A A = A n 那么:
∣ A ∣ ≠ 0 \begin{vmatrix}A\end{vmatrix} \ne 0 A =0 时: ∣ A ∗ ∣ = ∣ A n − 1 ∣ \begin{vmatrix}A^*\end{vmatrix}=\begin{vmatrix}A^{n-1}\end{vmatrix} A = An1 。事实上,在以后,我们也能证明在 ∣ A ∣ = 0 \begin{vmatrix}A\end{vmatrix}=0 A =0 时,也成立。
● 任何方阵都有伴随矩阵。
一阶矩阵的伴随矩阵都是1(矩阵或数字都行)
● 逆矩阵:
A是n阶方阵,若存在方阵B ,使AB=BA=E ;记作 A − 1 = B A^{-1}=B A1=B
○ 未必所有方阵都可逆. 0B = B0 = 0;
○ 若可逆,逆矩阵是唯一的.
○ 如果可逆, A A ∗ = A ∗ A = E AA^*=A^*A=E AA=AA=E (定义)
● 如何判断矩阵可逆?
若方阵的行列式不等于0,即该矩阵非奇异,非退化,满秩。该矩阵可逆。
● 定理矩阵可逆的充分必要条件: ∣ A ∣ ≠ 0 \begin{vmatrix}A\end{vmatrix} \ne0 A =0 A − 1 = 1 ∣ A ∣ A ∗ A^{-1} = \frac{1}{\begin{vmatrix}A\end{vmatrix}}A^* A1=A1A .
推论:A 是n阶方阵,B也是n阶方阵,如果AB=E (BA=E) A 可逆, A − 1 = B A^{-1}=B A1=B
● 求逆矩阵的两种方法:伴随矩阵法,初等变换法。用定理的是伴随矩阵法,计算量大。

例子: A+B=AB , 证:A-B可逆
AB-A-B = 0 (矩阵0)
AB-A-B+E=E
(A-E)B-(A-E)=E
(A-E)(B-E)=E
所以 ( A − E ) − 1 = B − E (A-E)^{-1}=B-E (AE)1=BE

矩阵方程: A x = A + 2 x A x − 2 x = A ( A − 2 E ) x = A ( x 在右边,提出后还在右边 ) 一定要先判断 ( A − 2 E ) 可逆 ( ∣ ( A − 2 E ) ∣ ≠ 0 ) ( A − 2 E ) − 1 ( A − 2 E ) x = ( A − 2 E ) − 1 A ( 同时 ∗ 左乘 ∗ ( A − 2 E ) − 1 x = ( A − 2 E ) − 1 A 矩阵方程:Ax=A+2x\\ Ax-2x=A\\ (A-2E)x=A (x在右边,提出后还在右边)\\ 一定要先判断(A-2E)可逆(\begin{vmatrix}(A-2E)\end{vmatrix} \ne0)\\ (A-2E)^{-1}(A-2E)x=(A-2E)^{-1}A(同时*左乘*(A-2E)^{-1}\\x=(A-2E)^{-1}A 矩阵方程:Ax=A+2xAx2x=A(A2E)x=A(x在右边,提出后还在右边)一定要先判断(A2E)可逆( (A2E) =0)(A2E)1(A2E)x=(A2E)1A(同时左乘A2E)1x=(A2E)1A

○ 提的时候注意方向
○ 矩阵不能直接减去一个数字,一定要将数字乘上单位阵
○ 矩阵不能做分母
○ 要先证明矩阵可逆,在使用逆矩阵
○ 待定法不要用
● 逆矩阵的性质:
a. A 可逆, A − 1 也可逆。 ( A − 1 ) − 1 = A A 可逆,A^{-1}也可逆。(A^{-1})^{-1}=A A可逆,A1也可逆。(A1)1=A ( A T ) T = A (A^T)^T=A (AT)T=A
b. 若A,B均可逆,AB可逆, ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1 ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
c. A 可逆, A T 可逆 A^T 可逆 AT可逆 ( A T ) − 1 = ( A − 1 ) T ( k ≠ 0 ) (A^T)^{-1} =(A^{-1})^T (k\ne0) (AT)1=(A1)Tk=0) ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1
A T ( A − 1 ) T = ( A − 1 A ) T = E T = E A^T(A^{-1})^T=(A^{-1}A)^T=E^T=E AT(A1)T=(A1A)T=ET=E
d. A 可逆, ∣ A − 1 ∣ = ∣ A ∣ − 1 \begin{vmatrix}A^{-1}\end{vmatrix}=\begin{vmatrix}A\end{vmatrix}^{-1} A1 = A 1
e. A 可逆, A ∗ A^* A 也可逆, ( A ∗ ) − 1 = 1 ∣ A ∣ A (A^*)^{-1}=\frac{1}{\begin{vmatrix}A\end{vmatrix}}A (A)1=A1A
f. 请添加图片描述

2.5 分块矩阵

● 要求:横线和属性一汽到头。
● 经常把每行或每列去分块。(行向量,列向量)
● 标准型:
特征,从左上角开始的一串1,其余地方全是0. (标准型不一定是方的)
没有0,也行。没有1,也行
标准型的左上角可以分成一个单位阵,
● 分块矩阵的运算
加法,对应位置相加
数乘,用数去乘以分块矩阵的每个元素
乘法,跟矩阵乘法相似。前提:能乘请添加图片描述

● 常见错误:请添加图片描述

● 分块矩阵的转置
把子块看作普通元素求转置,再对每个子块求转置
● 结论1: H = [ A 0 C B ] H=\left[\begin{matrix}A&0\\C&B\end{matrix}\right] H=[AC0B] A,B是m阶,n阶可逆。那么: H − 1 = [ A − 1 0 0 B − 1 ] H^{-1}=\left[\begin{matrix}A^{-1}&0\\0& B^{-1}\end{matrix}\right] H1=[A100B1] (可以推广到n阶)
● 结论2: H = [ A C 0 B ] H=\left[\begin{matrix}A&C\\0&B\end{matrix}\right] H=[A0CB] A,B是m阶,n阶可逆。那么: H − 1 = [ A − 1 − A − 1 C B − 1 0 B − 1 ] H^{-1}=\left[\begin{matrix}A^{-1}&-A^{-1}CB^{-1}\\0& B^{-1}\end{matrix}\right] H1=[A10A1CB1B1]
● 结论3: 结论2: H = [ A 0 C B ] H=\left[\begin{matrix}A&0\\C&B\end{matrix}\right] H=[AC0B] A,B是m阶,n阶可逆。那么: H − 1 = [ A − 1 − B − 1 C A − 1 0 B − 1 ] H^{-1}=\left[\begin{matrix}A^{-1}&-B^{-1}CA^{-1}\\0& B^{-1}\end{matrix}\right] H1=[A10B1CA1B1] (用的待定系数法)

2.6.1 初等变换

● 矩阵的三种初等变换:行和列相同。做初等变换不能用等号,只能用箭头
交换两行
k ( k ≠ 0 ) k(k\ne0) k(k=0) 乘以某行
某一行的x 倍加到零一行上。
● 矩阵的初等变换跟行列式的关系
没有关系
行列式一定是方的
矩阵是方的时,有关系:方阵的行列式与该方阵做初等变换后的行列式相等,可以画等号。
● 定理:任何矩阵通过初等变换变换为标准型
A经过初等变换得到B ,那么 A ≅ B A\cong B AB
反身性: A ≅ A A\cong A AA
对称性: A ≅ B → B ≅ A A\cong B \rightarrow B\cong A ABBA
传递性: A ≅ B , B ≅ C ⇒ A ≅ C A\cong B ,B\cong C \Rightarrow A\cong C AB,BCAC
● 矩阵的标准型的种类和秩:
请添加图片描述

2.6.2 初等方阵

● 对单位阵做一次初等变换得到的矩阵请添加图片描述

● 初等变换时一个过程,而初等方阵时一个结果。请添加图片描述

● 初等方阵均可逆,其逆矩阵也是初等方阵,初等仿真的转置也是初等方阵。
● 初等方阵左乘A ,相当于对A 实施了第 i 种 (同种的) 初等行变换;
初等方阵右乘A ,相当于对A 实施了第 i 种 (同种的) 初等列变换。
● 定理:任意矩阵A ,存在初等矩阵,使得A左乘或右乘该初等矩阵后,化成标准型。
推论:如果A、B等价 充要条件 存在可逆矩阵P,Q ,使得A左乘可逆矩阵后,等于B。
● 定理:A可逆 ⇔ \Leftrightarrow A 的标准型为单位阵。
● 定理:A可逆 ⇔ \Leftrightarrow A =单位阵的乘积
● 初等行变换法(只做行变换): A − 1 = 1 ∣ A ∣ A^{-1}=\frac{1}{\begin{vmatrix}A\end{vmatrix}} A1=A1 对矩阵A和单位阵E同时做初等变换,当A变成单位阵时,E就变成了 A − 1 A^{-1} A1

2.6.2 初等方阵

● 对单位阵做一次初等变换得到的矩阵
● 初等变换时一个过程,而初等方阵时一个结果。
● 初等方阵均可逆,其逆矩阵也是初等方阵,初等仿真的转置也是初等方阵。
● 初等方阵左乘A ,相当于对A 实施了第 i 种 (同种的) 初等行变换;
初等方阵右乘A ,相当于对A 实施了第 i 种 (同种的) 初等列变换。
● 定理:任意矩阵A ,存在初等矩阵,使得A左乘或右乘该初等矩阵后,化成标准型。
推论:如果A、B等价 充要条件 存在可逆矩阵P,Q ,使得A左乘可逆矩阵后,等于B。
● 定理:A可逆 ⇔ \Leftrightarrow A 的标准型为单位阵。
● 定理:A可逆 ⇔ \Leftrightarrow A =单位阵的乘积
● 初等行变换法(只做行变换): A − 1 = 1 ∣ A ∣ A^{-1}=\frac{1}{\begin{vmatrix}A\end{vmatrix}} A1=A1 对矩阵A和单位阵E同时做初等变换,当A变成单位阵时,E就变成了 A − 1 A^{-1} A1

2.7 矩阵的秩(rank)

● 对于一个矩阵 ,任取k行k列的子式(k=0,1,2 $\cdots $ ),求出子式行列式的值,非零子式的最高阶数就是该矩阵的秩。
● 秩用r来表示。
A m × n A_{m\times n} Am×n 0 ≤ r ( A ) ≤ m i n { m , n } 0\le r(A) \le min\{m,n\} 0r(A)min{m,n}
若r(A)=m ,取所有行,行满秩;r(A)=n ,取了所有列,列满秩 。
r ( A ) = m i n { m , n } r(A)=min\{m,n\} r(A)=min{m,n} 行列式满秩。
r ( A ) < m i n { m , n } r(A)<min\{m,n\} r(A)<min{m,n} 行列式降秩。
● A是方阵,且A满秩 ⇔ \Leftrightarrow A可逆 ⇔ ∣ A ∣ ≠ 0 \Leftrightarrow \begin{vmatrix}A\end{vmatrix}\ne0 A =0
● 定理: r ( A ) = r ⇔ 有一个 r 阶子式不为 0 ,所有 r + 1 阶为 0. r(A)=r \Leftrightarrow 有一个r阶子式不为0,所有r+1阶为0. r(A)=r有一个r阶子式不为0,所有r+1阶为0.
但是由于r+2阶子式按行展开都包含r+1阶的代数子式。运算后证明r+2阶子式为0。
● 阶梯型矩阵
定义:矩阵若有零行,零行在非零行下边;
左起首非零元左边零个数随行数增加而严格增加。(严格的意思是只能增加,不能相等)
● 行简化阶梯型
定义:是阶梯型的矩阵;
非零行的首非零元是1
首非零元所在列的其余元素是0
● 阶梯型与矩阵的秩之间的关系
对于一个阶梯型矩阵,取它的首非零元行、列的子式。那么所取到的子式的对角线上就是首非零元。那么这个子式的行列式一定不等于0。首非零元有几个数,矩阵的秩就是几
● 求矩阵秩的方法:
1.用初等变换将矩阵变换成标准型。根据标准型 ‘1’ 的个数来判断矩阵的秩。
2.用初等行变换将矩阵变换成阶梯型。根据阶梯型矩阵的非零行个数来判断矩阵的秩。
● 秩的性质:

r ( A ) = r ( A T ) r(A)=r(A^T) r(A)=r(AT)
任意矩阵乘以可逆矩阵,其秩不变。
A m × n    P 是 m 阶可逆方阵, Q 是 n 阶可逆方阵。 r ( a ) = r ( P A ) = r ( A Q ) = r ( P A Q ) A_{m \times n} \ \ P是m阶可逆方阵,Q是n阶可逆方阵。 r(a)=r(PA)=r(AQ)=r(PAQ) Am×n  Pm阶可逆方阵,Qn阶可逆方阵。r(a)=r(PA)=r(AQ)=r(PAQ)原因:P、Q可以看作多个初等矩阵的乘积。
P= P 1 P 2 P 3 ⋯ P s P_1P_2P_3\cdots P_s P1P2P3Ps Q = Q 1 Q 2 Q 3 ⋯ Q s Q=Q_1Q_2Q_3\cdots Q_s Q=Q1Q2Q3Qs
PA= P 1 P 2 P 3 P ⋯ P s P1P2P3P\cdots P_s P1P2P3PPs 即矩阵A左乘初等矩阵。即矩阵A做初等行变换。并不改变A的秩。右乘Q跟上边相似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远歌已逝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值