线性代数(第一章)行列式

第一章 行列式

1.1 二阶三阶行列式

引入: 由二元一次方程组引入二阶行列式。
∣ 1 2 3 4 ∣ \begin{vmatrix}1&2\\3&4\\ \end{vmatrix} 1324 的运算是 1 × 4 − 2 × 3 1\times4-2\times3 1×42×3
∣ a b c d ∣ \begin{vmatrix}a&b\\c&d\\ \end{vmatrix} acbd 的运算结果是a × \times ×b - c × \times ×d
∣ a b c d e f g h i ∣ \begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix} adgbehcfi 的运算结果是a × \times ×e × \times ×i + b × \times ×f × \times ×g + c × \times ×d × \times ×h - c × \times ×e × \times ×g - a × \times ×f × \times ×h - b × \times ×d × \times ×i

排列: 由1,2,3, ⋯ \cdots ,n组成的一个有序数组叫n级排序。是从1到b的不间断数

n级排列一共由n!种可能。
逆序: 比较大的数在小数之前。比如4213,4在1,2,3之前,就叫逆序数。
逆序数: 逆序的总数,4213 ,4大于2,1,3;2大于1所以4213的逆序数是4。记为N(4213)=4.
偶排列,奇排列: 逆序数为奇数的排列为奇排列,逆序数为偶数的排列为偶排列。
逆序数为0的排列被称为标准(自然)排列。
对换: 排列中的两个数交换一次就是一次对换,1个排列经过偶数次对换奇偶性不变。
定理: n级排列种,奇排列,偶排列各占 n ! 2 \frac{n!}{2} 2n!

1.2 n阶行列式

n阶行列式
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] = ∑ j = 0 j = n ( − 1 ) N ( j 1 j 2 j 3 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n (5) \left[ \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{matrix} \right] \tag{5} = \sum_{j=0}^{j=n}(-1)^{N(j_1j_2j_3\cdots j_n)}a_{1j_1}a_{2j_2}\cdots a_n{j_n} a11a21an1a12a22an2a1na2nann =j=0j=n(1)N(j1j2j3jn)a1j1a2j2anjn(5)

● 一阶行列式就等于它本身。
● 上、下三角矩阵的值等于主对角线元素相乘。
● 反上、下三角矩阵的值 == ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 ( n − 1 ) ⋯ a n 1 (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2(n-1)}\cdots a_{n1} (1)2n(n1)a1na2(n1)an1

● 定义:
( 1 按行)行标取自然排列,列取所有可能不同行不同列取n个元素相乘,符号由列标排列的奇偶性决定。
( 2 按列)列标取自然排列,行取所有可能不同行不同列取n个元素相乘,符号由行标排列的奇偶性决定
(3 既不按行,又不按列)符号由行的逆序数与列的逆序数的和决定。

1.2 行列式的性质

● 转置 : 行标换为列标,列标换位行标
● 性质: D T = D D^T = D DT=D 对行成立的性质,队列也成立
● 两行相换,值变号。D = - D 1 D_1 D1
推论: 两行对应相等,展开式等于0
● 某一行都乘以K ,等于用K 乘以D
   推论:某一行都有公因子K , K 可以提出去
所有元素都有公因子K, K 向外提 n 次
● 两行对应成比例 D = 0
推论: 某一行全为 0 ,D = 0
行列式某一行的元素相加,展开这行

● 某一行乘以某一个数,加到另一行上去,D 不变;列也相同。
请添加图片描述

1.3 行列式按行展开

● 余子式与代数余子式:请添加图片描述

● 定理: (某行元素乘以自己的代数余子式)的求和。
● 异乘变零定理:某行元素乘以零一行的代数余子式的求和 结果等于0;
请添加图片描述

证明:
● k次余子式 与k次代数余子式。 请添加图片描述

● 拉普拉斯展开定理:在n阶行列式中任意取定k行,由k行元素组成的所有k阶子式与 k阶代数余子式乘积之和等于0; 请添加图片描述
● 行列式相乘(同阶的) :
请添加图片描述
第一行乘以第一列是结果的第一行,第二行乘以第二列是 结果的第二列,第三行乘以第三列是结果的第三列。

1.4 行列式的计算

● 习惯:
化成上三角行列式;灵活交换行,少用分数相乘;
● 构造新的行列式:
请添加图片描述

题目:求 M 41 + M 42 + M 43 + M 44 M_{41}+M_{42}+M_{43}+M_{44} M41+M42+M43+M44.
因为4个余子式求更麻烦,转化为求代数余子式。然后构造新的行列式,新的行列式的值就是题目所求。而且可以根据第三行简单的求出。
● 加边法:请添加图片描述

○ 加边法不能改变行列式的值。
○ 三叉型行列式的求法:第一列加上后边的列。
○ 字母只有在说明不等于0的情况下才能放在分母。、
● 范德蒙德行列式:
[ 1 1 ⋯ 1 ⋮ ⋮ ⋱ ⋮ a 1 n − 2 a 22 ⋯ a 2 n a 1 n − 1 a n − 1 ⋯ a 1 n − 1 ] = ∏ ( x i − x j ) \left[ \begin{matrix} 1 & 1 & \cdots & 1\\ \vdots & \vdots &\ddots & \vdots\\ a_1^{n-2} & a_{22} & \cdots & a_{2n}\\ a_1^{n-1} & a^{n-1} & \cdots & a_1^{n-1} \end{matrix} \right]=\prod(x_i-x_j) 1a1n2a1n11a22an11a2na1n1 =(xixj)

其中: 1 ≤ i ≤ j ≤ n 1\leq i\leq j\leq n 1ijn
请添加图片描述

范德蒙德行列式是通过数学归纳法证明的。
● 反对称行列式:
主对角线全为0,上下位置对应成相反数。
a i j = − a j i ; a i i = − a i i a_{ij}=-a_{ji};a_{ii}=-a_{ii} aij=aji;aii=aii
反对称行列式,奇数阶,D=0:往外取了奇数次的-1, D = − D T D=-D^T D=DT.
● 对称行列式:
主对角线元素无要求,上下位置对应相等。

1.5 克莱姆法则

● 适用条件:
n个方程,n个未知数;D不等于0; x j = D j D x_j=\frac{D_j}{D} xj=DDj
齐次方程,未知数个数等于方程个数,D不等于0,那么方程组只有一个解:零。请添加图片描述
● 齐次线性方程组:
○ 至少有0解;
○ 齐次方程(方程=未知数),有非0解,充分必要条件是 行列式等于0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远歌已逝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值