背景简介:
最近在做SVM分类的学习,查看网上大多相关内容都是SVM原理介绍、推导和用终端命令行使用svm-train,svm-predict。具体数据分析实现很少。通过查找资料发现了一个很好的开发库LIBSVM。LIBSVM– A Library for Support Vector Machines是由the National Science Council of Taiwan发布维护的,对SVM进行了很好的封装,对数据分析更加方便,更主要它收集了大量的用于分类、回归、对标签的数据集,从数据角度对SVM进行深层次的学习,地址:https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/。
官方地址:https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 。
准备训练和测试数据:
在LibSVM官网就可以下载到需要的数据集,本例下载的UCI的breast-cancer数据集,训练样本和测试样本的基本格式如下:
<label> <index1>:<value1> <index2>:<value2>
例如:
- 4.000000 1:1099510.000000 2:10.000000 3:4.000000 4:3.000000 5:1.000000 6:3.000000 7:3.000000 8:6.000000 9:5.000000 10:2.000000
- 4.000000 1:1100524.000000 2:6.000000 3:10.000000 4:10.000000 5:2.000000 6:8.000000 7:10.000000 8:7.000000 9:3.000000 10:3.000000
- 4.000000 1:1102573.000000 2:5.000000 3:6.000000 4:5.000000 5:6.000000 6:10.000000 7:1.000000 8:3.000000 9:1.000000 10:1.000000
链接:https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#breast-cancer
字段含义:
0.Class: (2 for benign, 4 for malignant)
1. Sample code number: id number
2. Clump Thickness: 1 - 10
3. Uniformity of Cell Size: 1 - 10
4. Uniformity of Cell Shape: 1 - 10
5. Marginal Adhesion: 1 - 10
6. Single Epithelial Cell Size: 1 - 10
7. Bare Nuclei: 1 - 10
8. Bland Chromatin: 1 - 10
9. Normal Nucleoli: 1 - 10
10. Mitoses: 1 - 10
项目部署:
建立JAVA工程,导入LibSVM 的JAR包,要注意还需要导入java文件下的svm_train.java、svm_scale.java和svm_predict.java这三个文件,这三个类其实主要在LibSVM基础上做了进一步封装,把命令行参数转化成了String []类型的函数参数,方便API调用。另外一个svm_tony.java是图形界面可以不导入。
将训练和测试数据文件放在工程下,方便调用。
编写JAVA调用LibSVM API分类代码如下:
import java.io.IOException;
import libsvm.*;
/**JAVA test code for LibSVM
* @author yangliu
* @blog http://blog.csdn.net/yangliuy
* @mail yangliuyx@gmail.com
*/
public class LibSVMTest {
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
//Test for svm_train and svm_predict
//svm_train:
// param: String[], parse result of command line parameter of svm-train
// return: String, the directory of modelFile
//svm_predect:
// param: String[], parse result of command line parameter of svm-predict, including the modelfile
// return: Double, t