干数据分析这行十年了,老李我最常被业务部门追问的就是:“咱们的用户到底啥样?”。在如今竞争激烈的商业世界里,搞清楚用户的真实模样,绝对是企业成功的关键密码。一个精准的用户画像,能让企业的营销活动一击即中,产品研发更贴合市场需求。而一旦用户画像不精准,企业就如同盲人摸象,各种资源投入都可能打水漂,做再多努力也是徒劳。但说实在的,每一个用户都是独特的个体,他们的行为、喜好、需求千差万别,而这些信息又分散在各种复杂的渠道和数据当中。要想突破这个难题,就必须借助数字化工具,用数据来说话。毕竟,数据不会说谎,它能最真实地反映用户的行为和需求。今天,老李就不跟大家讲那些晦涩难懂的理论知识了,直接以亚马逊用户行为表现为例来讲解用户画像怎么做,看看如何从海量的数据中,勾勒出真实的用户画像。干货很多,建议收藏!
没有时间看完全文的朋友,老李先直接给你们分享一份用户行为分析模板,点开卡片/链接,搜索“用户画像”就可以直接下载套用了:帆软通行证登录
但“授人以鱼不如授人以渔”,想真正学会做用户画像的,不妨跟随老李思路,认真看看这份亚马逊用户行为分析报告是怎么做的。
一、业务背景
亚马逊成立于1994年,作为美国最大的网络电子商务公司,凭借其庞大的商品种类和先进的物流体系,在全球电子商务市场占据领先地位。然而,随着市场竞争的日益激烈,以及新兴电商平台的崛起,亚马逊面临着用户增长放缓、市场份额被蚕食等挑战。为了应对这些挑战,亚马逊始终坚持“最以客户为中心的公司”这一目标,不断优化用户体验,通过大数据分析深入了解客户需求,推出个性化推荐服务,并持续完善物流配送体系,以提高客户满意度和忠诚度,逐步巩固其在全球电子商务领域的领先地位。
这份分析报告通过收集印度加达格的亚马逊用户在2023年6月4号 - 16号期间行为数据,深入研究客户偏好、购物习惯和决策过程,更细化地了解消费者行为、识别趋势、优化营销策略并改善整体客户体验,为亚马逊在印度加达格地区差异化的用户运营和推广策略提供建议。
下面,老李以这张用FineBl制作的网上零售商关于市场及潜力的矩阵分布图为例,给大家讲一下用户市场规模和发展潜力的分析方法。大家可以在学习案例的同时,也自己动手操作一番,加深对用户画像构建的理解。
免费下载同款分析工具FineBI:帆软通行证登录
(1)指标说明
以市场规模(gmv,即商品交易总额)为纵轴,发展潜力为横轴,将不同的网上零售商分布在四个象限中。
各平台位置:
- 亚马逊(amazon)位于图中右上角,即处于较大市场规模但发展潜力欠缺的位置。
- 易贝(ebay)处于左上象限,市场规模较大但发展潜力被认为较小。
- 沃尔玛(Walmart)和 Shopify 处于右侧,意味着有发展潜力,不过沃尔玛市场规模更大一些。
- Wish 和 TARGET 处于下方,市场规模较小,其中 TARGET 有一定发展潜力,Wish 则发展潜力较小。
- Google Shopping 位于左下角,市场规模小且发展潜力不足。
(2)分析思路
- 基于市场规模大的分析:亚马逊目前拥有庞大的市场规模,说明其用户基数大,用户类型多样。在进行用户画像分析时,可以按照不同的用户群体进行细分,比如年龄、性别、地域、消费习惯等。例如,对于年轻消费者,可以分析他们在平台上购买的时尚、电子产品等品类偏好;对于中老年消费者,关注其健康、家居用品等方面的需求。
- 基于发展潜力欠缺的分析:由于发展潜力欠缺,亚马逊需要深度挖掘现有用户的潜在价值。这就需要对用户的行为数据进行深入分析,找出那些尚未被充分开发的需求点。比如,通过分析用户的浏览历史、收藏记录、加购但未购买的商品等数据,了解用户潜在的兴趣和需求,从而制定更有针对性的营销策略,满足用户的潜在需求,提高用户的复购率和消费金额。
(3)结论
- 市场格局方面:亚马逊在当前的市场规模上占据领先地位,但在发展潜力方面,像沃尔玛、Shopify 等平台表现出更强的增长态势。这表明亚马逊虽然目前是行业巨头,但面临着其他竞争对手在未来的挑战。
- 平台对比方面:与其他平台相比,不同平台在市场规模和发展潜力上各有优劣。例如,易贝和亚马逊类似,市场规模大但发展潜力不足;而 Google Shopping 则在两个维度上都相对较弱。
- 总结:亚马逊处于较大市场空间但是发展潜力欠缺的位置,因此更应该深度发掘用户的潜在价值。
二、用户画像分析思路
1、收集与处理数据
在构建亚马逊用户画像时,数据收集与处理是基础且关键的环节。我们收集的数据集,涵盖了亚马逊生态系统内丰富的信息,它整合了客户互动记录、浏览行为模式等多方面内容,涉及客户人口统计、用户交互以及产品评论等众多变量,为全面了解亚马逊消费者行为提供了充足的数据支持。完成数据收集后,紧接着进入数据预处理阶段。我们依据分析需求构造新的列,仔细甄别并剔除那些对本次分析无用的列,减少数据冗余,并合理调整列与列之间的位置关系。
2、用户行为分析
用户行为分析聚焦于了解消费者行为、优化营销策略以及提升整体客户体验,所以用户自然成为核心变量,所有分析都紧密围绕用户展开。具体分析过程中,首先从用户自身属性切入,包括社会属性以及历史行为属性。我们参考 AISAS 模型的“AI”部分,即引起注意和引起兴趣阶段,将用户选择模式划分为被动选择(个性化推荐)和主动选择(主动搜索浏览),了解用户获取产品信息的不同方式,以及背后的行为动机。接着,依据 AISAS 模型的“SAS”部分,也就是进行搜索、购买行动以及进行分享阶段,对应用户行为模块(包含搜索行为)和用户反馈模块,全面梳理用户从产生需求、搜索产品、购买决策到分享体验的整个行为路径,深入挖掘各个环节的特点和潜在规律。
3、用户标签探索性分析
在进行用户标签分析时,首要任务是依据与业务需求的相关性,判断各项分析的必要性。对核心用户标签和其余标签,我们展开相关探索性分析。而对于非核心用户标签,有选择性地进行探索。在分析过程中,合理控制分析内容的深度和广度,避免过度挖掘导致分析结果过于复杂,难以应用到实际业务中。通过这种有针对性的探索性分析,我们从海量数据标签中提炼出关键信息,为构建精准的用户画像提供有力支撑。
三、用户画像分析实操
以下是根据上述分析思路而进行的实际操作,按照用户自身属性、个性化推荐、用户决策、用户行为、用户反馈五个模块展开对用户行为和用户标签的探索和分析,最后得出用户画像:
1、用户自身属性
(1)数据解读
1. 活跃时间:
不同日期下,2023年6月4 - 16日期间,每日用户数有波动,如6月8日用户数为119,6月12日为36。周末/工作日维度,周六用户数占比最低为0.66%,周四最高为19.77%。不同时间段里,22 - 23时用户数达134,为一天中活跃高峰,11时仅7人,活跃度低。
2. 年龄:20 - 30岁用户占比52.49%,20 - 40岁接近80% ,60岁以上占比仅0.99%。
3. 性别:女性用户占比58.47% ,男性占23.95% ,14.78%的用户选择“Prefer not to say(不愿透露)”,3.16%为“Others(其他)”。
(2)分析结论
1. 活跃规律:用户活跃在一周内呈现不均衡性,工作日活跃度整体高于周末;一天内集中在14 - 15、17 - 19及22 - 23这三个时段。
2. 年龄结构:以20 - 40岁的中青年群体为主,说明平台对该年龄段用户吸引力较大。
3. 性别差异:女性用户数量显著多于男性,是平台的主要用户群体之一。
2、个性化推荐
(1)数据解读
1. 推荐频率:不同个性化产品推荐频率中,得分3(频率正常)的用户数占比39.87%最高,得分5(频率很低)的占比5.81%最低。
2. 推荐得分:个性化产品推荐得分中,得分3的用户占比47.84%,得分2的占29.73% ,整体评价中等。
3. 购买行为:在是否在个性化商品推荐下购买过商品的调查中,“Yes(是)”的占比20.27% ,“Sometimes(有时)”占38.04% ,“No(否)”占41.69%。
(2)分析结论
1. 频率偏好:用户较倾向于正常或较频繁的个性化推荐频率。
2. 效果评价:用户对个性化推荐的整体评价处于中等水平,说明推荐精准度和质量有提升空间。
3. 购买影响:近60%的用户因个性化推荐产生过购买行为,表明个性化推荐在一定程度上能影响用户购买决策。
3、用户决策
(1)数据解读
1. 评论依赖度:商品评论依赖度方面,“Moderately(中等)”占33.06% ,“Occasionally(偶尔)”占31.56% ,“Heavily(重度)”占23.40% ,合计近90%用户对商品评论有不同程度依赖。
2. 评论价值度:认为商品评论价值“Moderately(中等)”的占33.06% ,“Occasionally(偶尔)”占31.56% ,“Heavily(重度)”占23.40% ,多数用户认可评论有中等偏高价值。
3. 评论帮助性:超70%用户认为商品评论对自己有所帮助,“Yes(是)”占26.68% ,“Sometimes(有时)”占45.35%。
4. 放弃加购因素:放弃加购商品因素中,“Found a better price elsewhere(在别处找到更优惠价格)”占42.36% ,“Changed my mind or no longer need the item(改变主意或不再需要该商品)”占32.21% ,为主要原因。
(2)分析结论
1. 评论重要性:商品评论在用户决策过程中占据重要地位,多数用户在购买决策时依赖且认可评论价值。
2. 影响因素:价格和需求变化是导致用户放弃加购的关键因素。
4、用户行为
(1)数据解读
1. 搜索方式:用户搜索商品方式中,“Keyword(关键字)”占56.40% ,“Categories(类别)”占37.04% ,是主要搜索途径。
2. 搜索页数:73.42%的用户会进行多页搜索(“Multiple pages(多页)”)。
3. 浏览加购:用户浏览商品后加购概率至少35%以上(“Maybe(可能)”41.20% + “Yes(是)”24.86% )。
4. 加购交易:约30%多的概率会加购后完成交易(“Sometimes(有时)”50.50% + “Often(经常)”26.25% 中部分转化)。
5. 功能使用:近80%用户对使用“保护以供稍后使用”的功能接受程度较高(“Always(总是)”8.97% + “Often(经常)”26.25% + “Sometimes(有时)”43.20% )。
(2)分析结论
1. 搜索习惯:用户习惯通过关键字和类别搜索商品,且有较强的探索意愿,倾向于多页搜索。
2. 购买转化:浏览 - 加购 - 交易环节存在一定的流失,但仍有部分用户完成转化,“保护以供稍后使用”功能受用户认可。
5、用户反馈
(1)数据解读
1. 评论留下:近半数用户(48.50% )不会留下商品评论,留下评论的用户占51.50%。
2. 满意度:近8成用户对在亚马逊平台的购物体验满意度中等偏上,满意度得分2(占32.22% )和3(占34.72% )的居多。
3. 性别差异:女性满意度平均得分2.46,稍高于男性的2.30 。
4. 喜欢方面:用户最喜欢的点中,“Product recommendations(产品推荐)”占32.73% ,“Competitive prices(竞争性价格)”占30.23% ,“Wide product selection(广泛的商品选择空间)”占24.92% 。
5. 改进建议:用户希望改善的点里,“Customer service responsiv(客户服务响应)”占36.08% ,“Product quality and accuracy(产品质量及准确性)”占26.41% ,“Reducing packaging waste(减少包装时浪费)”占22.09% 。
(2)分析结论
1. 评论参与度:用户评论参与度有待提高。
2. 满意度:整体满意度尚可,女性满意度略高于男性。
3. 优势与不足:产品推荐、价格和商品选择是平台优势;客户服务、产品质量和包装问题是用户期望改进的方向。
四、用户画像分析结论与策略建议
1、精准定位与个性化服务
基于用户年龄和性别特征,平台的主要用户群体为 20 - 40 岁的女性。因此,应该围绕这一核心群体展开深度运营。在商品选品上,进一步丰富美容美体和服装时尚品类的多样性与独特性,引入更多符合该年龄段女性审美和需求的品牌与款式。同时,利用个性化推荐系统,根据这部分用户的浏览、购买历史以及实时行为数据,在其活跃时段(周一至周五的 14 - 15、17 - 19 及 22 - 23 时)精准推送个性化商品推荐,提高推荐的针对性和转化率。
2、优化购物流程与提升转化
用户习惯通过关键字和类别搜索商品而且倾向多页搜索,平台要优化搜索算法,确保排名顺序和类别分类的精准性,让搜索结果更符合用户需求。针对用户浏览加购概率高但加购完成交易概率低的情况,在加购环节设置智能提醒和个性化优惠策略,如提供限时折扣、满减优惠、赠品等,引导用户完成交易。此外,持续优化 “保护以供稍后使用” 功能,根据用户使用数据进一步完善功能细节,提升用户体验,增强用户对平台购物流程的粘性。
3、优化营销策略与推荐算法
商品评论在用户决策中至关重要,亚马逊应该加大对评论系统的投入。通过奖励机制鼓励更多用户留下评论,提高评论参与度。建立高效的评论筛选和排序算法,突出高价值评论,为用户提供更有参考性的信息。同时,持续发挥产品推荐、竞争性价格和广泛商品选择空间的优势,优化推荐算法以提升推荐精准度,加强供应链管理以维持价格竞争力和丰富商品种类。针对用户反馈的客户服务响应、产品质量及准确性和包装浪费问题,建立快速响应的客服团队,优化质量检测流程,采用环保可降解的包装材料,全面提升用户对平台的满意度和忠诚度 。
特此声明,此案例由团队La vie制作,参加了2023BI数据分析大赛,并获得了优异的成绩,案例的用户画像分析思路和数据分析方法很值得大家参考和借鉴。
五、总结
用户画像就像是用户的动态心电图,时刻反映着用户的变化。通过今天的这个案例,我们不难看出用户标签不在多,而在于精准、有用,能真正为业务提供指导。在进行用户画像分析时,要记住三个字:快(实时性强)、准(精准度高)、活(灵活性好)。从市场定位出发,依据用户的各类属性、行为、决策以及反馈数据,精准地描绘出用户的画像特征,从而为企业的战略决策提供有力支持。也建议大家随着市场环境和用户行为的变化,持续优化用户画像,确保其时效性和准确性。最后,老李再分享一套零售会员营销解决方案,涵盖经营分析、商品分析、门店分析等实用场景,可以直接套用,帮你更清晰地讲述数据故事,制定决策战略。点击卡片/链接即可领取全套方案:零售会员营销解决方案 - 帆软数字化资料中心