行列式及其几何意义-3b1b课程笔记

#行列式及其几何意义
我们来考察之前说的线性变换,我们注意到它们对整个空间进行放缩
有件事对于我们理解线性变换很有帮助,就是测量对于空间的放缩程度
更具体一点就是一个给定区域的变化比例
举个例子
[ 3 0 0 2 ] , 在这里 i ^ 延长了 3 倍, j ^ 被延长了 2 倍数,显然这个系数是 6 \left[ \begin{matrix} 3 & 0\\ 0 & 2\\ \end{matrix} \right],在这里\widehat{i}延长了3倍,\widehat{j}被延长了2倍数,显然这个系数是6 [3002],在这里i 延长了3倍,j 被延长了2倍数,显然这个系数是6
接下来考虑一个剪切矩阵
[ 1 1 0 1 ] , 也就意味着 i ^ 保持不变 j ^ 移动到 ( 1 , 1 ) \left[ \begin{matrix} 1 & 1\\ 0 & 1\\ \end{matrix} \right],也就意味着\widehat{i}保持不变\widehat{j}移动到(1,1) [1011],也就意味着i 保持不变j 移动到(1,1)
但它的系数仍为一,因为它张开的平行四边形的面积并没有改变。所以哪怕你向右挤压他,他仍有可能不改变这个系数,实际上你只需要知道这个比例就能告诉你任意空间的比例
这个比例其实就是
d e t ( [ 3 2 0 2 ] ) = 6 det( \left[ \begin{matrix} 3 & 2\\ 0 & 2\\ \end{matrix} \right] )=6 det([3022])=6
如果一个式子的det是1/2则它张成的面积应该被缩小一半
如果是0,则称这些向量存在线性相关
如果它的det为-1实际上是对空间的一个翻转

那么我们知道
a b s ( d e t ( M 1 ) ) 是面积的缩放比例,而正负表示是否对空间进行翻转 abs(det(M1))是面积的缩放比例,而正负表示是否对空间进行翻转 abs(det(M1))是面积的缩放比例,而正负表示是否对空间进行翻转

三维空间

在三维中正方体经过线性变化是一个平行六面体
而负值对于三维空间其实是右手定则的方向的翻转
请添加图片描述

二阶行列式计算通式

d e t ( M 1 ) = a d − b c det(M1)=ad-bc det(M1)=adbc
并且所有的n阶行列式计算都有一个结合律
d e t ( M 1 M 2 ) = d e t ( M 1 ) d e t ( M 2 ) det(M1M2)=det(M1)det(M2) det(M1M2)=det(M1)det(M2)
这是显而易见的因为这是一个连续的liner transformation的过程

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值