线性组合,张成的空间与基--3b1b课程笔记

线性组合,张成的空间与基

上期回顾和引言

上个笔记了解了向量坐标,这是在数与向量之间反复出现的概念
比如说一对数和对应的二维向量
其实还有一些更有趣的方法看待这个坐标
它对线性代数尤其重要

新的向量坐标理解方式

当我们得到一个向量坐标
例如
a ⃗ = [ 3 − 2 ] \vec{a}= \left[ \begin{matrix} 3 \\ -2 \\ \end{matrix} \right] a =[32]
最初我把每个坐标看为一个终点坐标,也就是说他们如何拉伸或压缩一个向量
但在xy坐标系中我们有2个很有意思的向量——基向量就是单位向量
i ^ , j ^ \widehat{i},\widehat{j} i ,j
前者在坐标轴上沿着x轴方向
后者在坐标轴上沿着y轴方向
现在可以想象那么一件事
[ 3 − 2 ] 实际上在描绘这件事,就是 3 ∗ i ^ + ( − 2 ) ∗ ( ^ j ) 的向量和 \left[ \begin{matrix} 3 \\ -2 \\ \end{matrix} \right] 实际上在描绘这件事,就是3*\widehat{i}+(-2)*\widehat(j)的向量和 [32]实际上在描绘这件事,就是3i +(2)( j)的向量和
从这个角度看,这个向量实际上是两个经过缩放的向量的和
缩放向量并且相加
顺带一提
i ^ , j ^ \widehat{i},\widehat{j} i ,j
被称为坐标系的基
这是在说你将
[ x y ] \left[ \begin{matrix} x\\ y\\ \end{matrix} \right] [xy]
中的xy看为两个基向量经过对应标量放缩后求向量和的结果

在构建坐标系时选择不同的基向量会怎样

我们可以选择一组其他基向量,构成一个合理的坐标系,比如这样
请添加图片描述

想象一下,两个标量分别用于缩放两者中的其中一个,然后把他们相加,能得到完全不同的结果

通过改变所选择的标量可以得到哪些二维向量

答案是所有的二维向量

那么为什么呢

这样一对新的基向量,同样允许我们在一对数和二维向量之间自由转化
但是这种变化关系和之前用
i ^ , j ^ \widehat{i},\widehat{j} i ,j
的转化关系完全不同
这种不同坐标系之间的确切的转换关系在之后再说
但就目前而言,我觉得有一个重要的点:我们用数字描述向量时都依赖于我们使用的基向量。

线性组合

两个数乘向量的和被称为两个向量的线性组合

线性这个词怎么来的,这跟直线有什么关系

虽然这不是这个词的根源但我喜欢这样看待它,如果固定一个标量,让另一个标量随意变化,所产生的向量的终点会画成一条直线

连个标量同时改变会得到什么

如果你两个标量同时自由变化,考虑所有可能得到的向量,有两种情况。第一种大部分情况下,对于一堆初始向量,你能达到平面中的每一个点
现在有个棘手的情况,这两个向量共线,所产生的向量会固定于过原点的一条直线
实际上可能还有第三种情况,两个向量都是零向量
那你个飞舞只能呆在原点力
所有可以表示为给定向量线性组合的向量的集合被称为给定向量张成的空间
好的我们现在开始说黑话
对大部分二维向量来说,他们张成的空间是所有二维空间的集合
请添加图片描述

终于给了张图不是吗
当他们共线时它们张成的空间是重点落在一条直线上的向量的集合
是否还记得上个笔记的话
线性代数紧紧围绕向量加法和数乘
两个向量张成的空间实际上是问仅通过向量加法和数乘这两种方式,你能获得的可能向量集合是什么

现在我们回到通常对向量的看法——当作点

想象落在一条直线上的向量时太过拥挤了,同时想象二维向量?
哦孩子,神智开始离你远去了,真的想看?拿给你看一眼,就一眼
请添加图片描述

所以用终点来代表向量,起点依旧在终点
这样你只需要考虑直线和平面本身就好了
请添加图片描述

寰宇为之一清
少的向量看作箭头,考虑多个向量时就把它们都看作点,这不用我教
还是之前的例子,我们考察大部分向量能张成的二维平面,当然如果共线,他们张成的就是一条直线
请添加图片描述

这图多好看
如果加上第三个向量呢?

对三维向量的考察

请添加图片描述

和二维向量差不多,而这个可能的线性组合构成了他们张成的空间
继续是两种情况
1.和前两个向量共面,张成空间不改变
2.如果不共面,这样我们能通过所有线性组合得到所有的三维向量
当你缩放第三个向量时它将前两者构成的平面来回移动扫过整个空间
当然你也可以向前者一样用你得到的三个标量构建出全部三维向量
当然如果第三个向量和二者中某个向量共线的时候,我们需要一些术语描述它们,即一组向量中最少有一位在摸鱼,没有对张成空间做出任何贡献,你可以移除那个向量而不减少张成的空间。请添加图片描述

这个时候我们称之为线性相关
另一种表述方法是一个向量可以表示为其他向量的线性组合,意味着这个向量落入到了其他向量张成的空间之中
另一个方面如果所有向量都给张成的空间增添了新的维度我们称他们为线性无关
请添加图片描述

思考道谜题

空间中的一组基的严格定义是这样的:张成该空间的一个线性无关向量的集合,根据之前对基的描述,以及对”张成“和”线性无关“的这两个词的理解,思考一下这个定义为何合乎情理。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值