0-1 背包问题

 背包问题是一个非常好的动态规划入门题目,是动态规划中最常见的问题形式。其具有很多变种,例如 0-1 背包问题、完全背包问题、多重背包问题等。

在本节中,我们先来求解最常见的 0-1 背包问题。

Question

给定 n 个物品,第 i 个物品的重量为 wgt[i−1]、价值为 val[i−1] ,和一个容量为 cap 的背包。每个物品只能选择一次,问在限定背包容量下能放入物品的最大价值。

观察图 14-17 ,由于物品编号 i 从 1 开始计数,数组索引从 0 开始计数,因此物品 i 对应重量 wgt[i−1] 和价值 val[i−1] 。

0-1 背包的示例数据

图 14-17   0-1 背包的示例数据

我们可以将 0-1 背包问题看作一个由 n 轮决策组成的过程,对于每个物体都有不放入和放入两种决策,因此该问题满足决策树模型。

该问题的目标是求解“在限定背包容量下能放入物品的最大价值”,因此较大概率是一个动态规划问题。

第一步:思考每轮的决策,定义状态,从而得到 dp 表

对于每个物品来说,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 i 和背包容量 c ,记为 [i,c] 。

状态 [i,c] 对应的子问题为:前 i 个物品在容量为 c 的背包中的最大价值,记为 dp[i,c] 。

待求解的是 dp[n,cap] ,因此需要一个尺寸为 (n+1)×(cap+1) 的二维 dp 表。

第二步:找出最优子结构,进而推导出状态转移方程

当我们做出物品 i 的决策后,剩余的是前 i−1 个物品决策的子问题,可分为以下两种情况。

  • 不放入物品 i :背包容量不变,状态变化为 [i−1,c] 。
  • 放入物品 i :背包容量减少 wgt[i−1] ,价值增加 val[i−1] ,状态变化为 [i−1,c−wgt[i−1]] 。

上述分析向我们揭示了本题的最优子结构:最大价值 dp[i,c] 等于不放入物品 i 和放入物品 i 两种方案中价值更大的那一个。由此可推导出状态转移方程:

dp[i,c]=max(dp[i−1,c],dp[i−1,c−wgt[i−1]]+val[i−1])

需要注意的是,若当前物品重量 wgt[i−1] 超出剩余背包容量 c ,则只能选择不放入背包。

第三步:确定边界条件和状态转移顺序

当无物品或背包容量为 0 时最大价值为 0 ,即首列 dp[i,0] 和首行 dp[0,c] 都等于 0 。

当前状态 [i,c] 从上方的状态 [i−1,c] 和左上方的状态 [i−1,c−wgt[i−1]] 转移而来,因此通过两层循环正序遍历整个 dp 表即可。

根据以上分析,我们接下来按顺序实现暴力搜索、记忆化搜索、动态规划解法。

1.   方法一:暴力搜索

搜索代码包含以下要素。

  • 递归参数:状态 [i,c] 。
  • 返回值:子问题的解 dp[i,c] 。
  • 终止条件:当物品编号越界 i=0 或背包剩余容量为 0 时,终止递归并返回价值 0 。
  • 剪枝:若当前物品重量超出背包剩余容量,则只能选择不放入背包。

knapsack.py

def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
    """0-1 背包:暴力搜索"""
    # 若已选完所有物品或背包无剩余容量,则返回价值 0
    if i == 0 or c == 0:
        return 0
    # 若超过背包容量,则只能选择不放入背包
    if wgt[i - 1] > c:
        return knapsack_dfs(wgt, val, i - 1, c)
    # 计算不放入和放入物品 i 的最大价值
    no = knapsack_dfs(wgt, val, i - 1, c)
    yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
    # 返回两种方案中价值更大的那一个
    return max(no, yes)

可视化运行

如图 14-18 所示,由于每个物品都会产生不选和选两条搜索分支,因此时间复杂度为 O(2n) 。

观察递归树,容易发现其中存在重叠子问题,例如 dp[1,10] 等。而当物品较多、背包容量较大,尤其是相同重量的物品较多时,重叠子问题的数量将会大幅增多。

0-1 背包问题的暴力搜索递归树

图 14-18   0-1 背包问题的暴力搜索递归树

2.   方法二:记忆化搜索

为了保证重叠子问题只被计算一次,我们借助记忆列表 mem 来记录子问题的解,其中 mem[i][c] 对应 dp[i,c] 。

引入记忆化之后,时间复杂度取决于子问题数量,也就是 O(n×cap) 。实现代码如下:

PythonC++JavaC#GoSwiftJSTSDartRustCKotlinRubyZig

knapsack.py

def knapsack_dfs_mem(
    wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
) -> int:
    """0-1 背包:记忆化搜索"""
    # 若已选完所有物品或背包无剩余容量,则返回价值 0
    if i == 0 or c == 0:
        return 0
    # 若已有记录,则直接返回
    if mem[i][c] != -1:
        return mem[i][c]
    # 若超过背包容量,则只能选择不放入背包
    if wgt[i - 1] > c:
        return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
    # 计算不放入和放入物品 i 的最大价值
    no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
    yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
    # 记录并返回两种方案中价值更大的那一个
    mem[i][c] = max(no, yes)
    return mem[i][c]

可视化运行

图 14-19 展示了在记忆化搜索中被剪掉的搜索分支。

0-1 背包问题的记忆化搜索递归树

图 14-19   0-1 背包问题的记忆化搜索递归树

3.   方法三:动态规划

动态规划实质上就是在状态转移中填充 dp 表的过程,代码如下所示:

PythonC++JavaC#GoSwiftJSTSDartRustCKotlinRubyZig

knapsack.py

def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
    """0-1 背包:动态规划"""
    n = len(wgt)
    # 初始化 dp 表
    dp = [[0] * (cap + 1) for _ in range(n + 1)]
    # 状态转移
    for i in range(1, n + 1):
        for c in range(1, cap + 1):
            if wgt[i - 1] > c:
                # 若超过背包容量,则不选物品 i
                dp[i][c] = dp[i - 1][c]
            else:
                # 不选和选物品 i 这两种方案的较大值
                dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
    return dp[n][cap]

可视化运行

如图 14-20 所示,时间复杂度和空间复杂度都由数组 dp 大小决定,即 O(n×cap) 。

0-1 背包问题的动态规划过程

图 14-20   0-1 背包问题的动态规划过程

4.   空间优化

由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 O(n2) 降至 O(n) 。

进一步思考,我们能否仅用一个数组实现空间优化呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当开始遍历第 i 行时,该数组存储的仍然是第 i−1 行的状态。

  • 如果采取正序遍历,那么遍历到 dp[i,j] 时,左上方 dp[i−1,1] ~ dp[i−1,j−1] 值可能已经被覆盖,此时就无法得到正确的状态转移结果。
  • 如果采取倒序遍历,则不会发生覆盖问题,状态转移可以正确进行。

图 14-21 展示了在单个数组下从第 i=1 行转换至第 i=2 行的过程。请思考正序遍历和倒序遍历的区别。

<1><2><3><4><5><6>

0-1 背包的空间优化后的动态规划过程

图 14-21   0-1 背包的空间优化后的动态规划过程

在代码实现中,我们仅需将数组 dp 的第一维 i 直接删除,并且把内循环更改为倒序遍历即可:

knapsack.py

def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
    """0-1 背包:空间优化后的动态规划"""
    n = len(wgt)
    # 初始化 dp 表
    dp = [0] * (cap + 1)
    # 状态转移
    for i in range(1, n + 1):
        # 倒序遍历
        for c in range(cap, 0, -1):
            if wgt[i - 1] > c:
                # 若超过背包容量,则不选物品 i
                dp[c] = dp[c]
            else:
                # 不选和选物品 i 这两种方案的较大值
                dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
    return dp[cap]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值