常用算法-动态规划


🔷 背包问题 (Knapsack Problem)

  • 特点:

    • 问题描述: 给定一组物品,每个物品有一个重量和一个价值,确定哪些物品应该被选择,使得总重量不超过背包的容量,同时总价值最大。
  • 优点:

    • 提供了一个有效的方法来解决具有重叠子问题和最优子结构的问题。
    • 能够避免重复计算。
  • 缺点:

    • 需要额外的存储空间来保存子问题的解。
    • 实施起来可能比较复杂。

示例:

使用二维数组 dp[i][j] 表示在前 i 个物品中选择总重量不超过 j 的物品的最大价值。

  1. 初始化 dp[0][j] = 0,表示没有物品时的价值为0。
  2. 对于每个物品,根据其重量和价值,更新 dp[i][j] 的值。
  3. 最后,dp[n][W] 将包含最大的价值,其中 n 是物品的数量,W 是背包的容量。

🔷 最长公共子序列 (Longest Common Subsequence, LCS)

  • 特点:

    • 问题描述: 给定两个序列,找到两个序列都有的最长子序列的长度。
  • 优点:

    • 动态规划提供了一种有效的方法来解决这个问题,避免了暴力解法的高复杂性。
  • 缺点:

    • 需要额外的存储空间。

示例:

使用二维数组 dp[i][j] 表示前 i 个字符的第一个序列和前 j 个字符的第二个序列的LCS的长度。

  1. 如果两个序列的当前字符相同,则 dp[i][j] = dp[i-1][j-1] + 1
  2. 如果不相同,则 dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  3. 最后,dp[m][n] 将给出LCS的长度,其中 mn 分别是两个序列的长度。

🔷 最短路径问题 (Shortest Path Problem)

  • 特点:

    • 问题描述: 在加权图中找到从源点到所有其他顶点的最短路径。
  • 优点:

    • Dijkstra算法和Bellman-Ford算法都使用了动态规划的原理。
    • 能够找到最短路径并计算其长度。
  • 缺点:

    • Dijkstra算法不能处理负权边。
    • Bellman-Ford算法的时间复杂度相对较高。

示例:

Dijkstra算法使用优先队列来选择当前最短路径的顶点,并更新其相邻顶点的路径长度。这个过程会重复,直到找到所有顶点的最短路径。

Bellman-Ford算法会重复地遍历所有的边,尝试更新每个边的两个顶点之间的距离。这个过程会重复 n-1 次,其中 n 是顶点的数量。

⚠️ 注意: 动态规划是一种强大的解决复杂问题的技术,它通过分解问题成小问题来解决大问题。通过存储子问题的解,可以避免重复的工作,从而提高效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yueerba126

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值