opencv学习笔记-imread()

import cv2
import numpy as np
lena=cv2.imread("img_00.jpg")
print(lena)
print(type(lena))
Y=lena.shape[1]
X=lena.shape[0]
z=3
data_dim=Y*X*3
print("Y是563行",lena.shape[0])
print("X是750列",lena.shape[1])
print("通道数是3",lena.shape[2])
lena=np.squeeze(lena)
print("更新后的lena")
print(lena)
print("reshape处理")
lena=lena.reshape(data_dim,1)
print(lena)

print(type(lena))
print(lena.shape[0])
print(lena.shape[1])

#lena=np.squeeze(lena)
#print("squeeze后的lena:")
#print(lena)
print(type(lena))
print(lena.shape[0])
print("转置后的lena")
lena1=lena.T
print(lena1)
print(type(lena1))
#zz=np.dot(lena,lena)
#print("点成后的结果",zz)

在这里插入图片描述
在这里插入图片描述
总结:
首先通过cv2.imread()方法读取一张图片,返回值给lena
分析lena的各个属性,打印出来可以看出来他是一个numpy.ndarray类型,他的内容是一个矩阵,三维矩阵563行,750列,深度方向是3层。这张图片是Y方向是563像素,X方向是750像素,rgb三个通道。
其次:opencv把jpg格式的图片通过imread方法转换成了一个数字矩阵,每个数值在0-255之间,变成了numpy包里面的数组对象,这样就可以通过numpy的数学方法处理图片。(化具体的图片为抽象的数学数字)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuejich

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值