这里写自定义目录标题
python 迭代器和生成器
首先介绍几个小概念
1、迭代器模式 (Iterator pattern):惰性获取数据的方式,按需一次获取一个数据项。
2、迭代器用于从集合中取出元素,生成器用于‘凭空’生成元素,所有的生成器都是迭代器,因为所有的生成器都实现了迭代器接口。
可迭代对象与迭代器
1、可迭代对象:分为两种情况1.对象实现了能返回迭代器的__iter__方法。2.实现了__getitem__方法,而且参数是从零开始索引的。
2、可迭代对象和迭代器之间的关系:python从可迭代的对象中获取迭代器。
举例来说:
s='ABC'
字符串s属于可迭代对象的第二种情况,背后是有迭代器的,只不过我们看不到:
>>> for char in s:
... print(char)
...
A
B
C
当然我们也可以使用可迭代的对象构建迭代器it:
>>> it = iter(s)
>>> while True:
... print(next(it))
...
A
B
C
3.标准迭代器接口有两个方法:
__next__返回下一个可用的元素,如果没有元素了,抛出StopIteration异常。
__iter__返回self,以便应该使用可迭代对象的对象使用迭代器。
可迭代的对象有__iter__ 方法,每次都会实例化一个新的迭代器;
迭代器__next__方法返回单个元素,__iter__返回迭代器本身
生成器
定义:只要python函数中有yield关键字,该函数就是生成器函数。调用生成器函数时,会返回一个生成器对象。
与普通函数不同,生成器只会在响应迭代操作时才会运行。
>>> def gen_123():
... yield 1
... yield 2
... yield 3
...
>>> gen_123
<function gen_123 at 0x10d62be18>
>>> gen_123()
<generator object gen_123 at 0x10d842f68>
>>> g=gen_123()
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
生成器的另一种形式(),其中a 就是一个生成器对象:
a=(x*x for x in range(1,4))
>>> a
<generator object <genexpr> at 0x10d842f68>
>>> next(a)
1
>>> next(a)
4
>>> next(a)
9
>>> next(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration