python生成器迭代器

python 迭代器和生成器

首先介绍几个小概念

1、迭代器模式 (Iterator pattern):惰性获取数据的方式,按需一次获取一个数据项。
2、迭代器用于从集合中取出元素,生成器用于‘凭空’生成元素,所有的生成器都是迭代器,因为所有的生成器都实现了迭代器接口。

可迭代对象与迭代器

1、可迭代对象:分为两种情况1.对象实现了能返回迭代器的__iter__方法。2.实现了__getitem__方法,而且参数是从零开始索引的。
2、可迭代对象和迭代器之间的关系:python从可迭代的对象中获取迭代器。
举例来说:

s='ABC'

字符串s属于可迭代对象的第二种情况,背后是有迭代器的,只不过我们看不到:

>>> for char in s:
...     print(char)
...
A
B
C

当然我们也可以使用可迭代的对象构建迭代器it:

>>> it = iter(s)
>>> while True:
...     print(next(it))
...
A
B
C

3.标准迭代器接口有两个方法:
__next__返回下一个可用的元素,如果没有元素了,抛出StopIteration异常。
__iter__返回self,以便应该使用可迭代对象的对象使用迭代器。

可迭代的对象有__iter__ 方法,每次都会实例化一个新的迭代器;
迭代器__next__方法返回单个元素,__iter__返回迭代器本身

生成器

定义:只要python函数中有yield关键字,该函数就是生成器函数。调用生成器函数时,会返回一个生成器对象。
与普通函数不同,生成器只会在响应迭代操作时才会运行。

>>> def gen_123():
...     yield 1
...     yield 2
...     yield 3
...
>>> gen_123
<function gen_123 at 0x10d62be18>
>>> gen_123()
<generator object gen_123 at 0x10d842f68>
>>> g=gen_123()
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

生成器的另一种形式(),其中a 就是一个生成器对象:

 a=(x*x for x in range(1,4))
>>> a
<generator object <genexpr> at 0x10d842f68>
>>> next(a)
1
>>> next(a)
4
>>> next(a)
9
>>> next(a)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值