DALLE3.0结合ChatGPT生成专属prompt(甜美版)

目录

1.DALLE3.0

2.创作体验

3.生成案例的Prompt

4.图片展示

5.声明


1.DALLE3.0

DALL-E 3 是 OpenAI 再次展现其技术实力的力作,相较于前代版本,它实现了显著飞跃。倚仗先进的 Transformer 架构所赋予的强大自然语言理解能力,DALL-E 3 能够深度领会用户的设计意图,并以令人惊叹的准确度将其细腻地转化为视觉艺术作品。

2.创作体验

DALL-E 3 目前可通过两个官方渠道体验:首先,用户能够通过浏览器访问 Microsoft Edge 创作中心(http://bing.com/create)来免费尝试其部分功能;其次,对于ChatGPT Plus订阅用户而言,他们有机会在专属平台获得更为丰富的DALL-E 3创作服务。尽管两者接入方式不同,但均旨在让用户享受到基于OpenAI前沿技术的图像生成能力,实现从文本到艺术作品的创新性转化。

3.生成案例的Prompt

中文版:亚洲年轻女性,五官特征鲜明,淡雅妆容搭配红唇,棕色波浪卷发配空气刘海,手持手机室内自拍,身穿宽松T恤与百褶裙,浅米色调的卧室内,柔和灯光下简约家居布置,清新舒适的自然格调,高清近景特写

English:Young Asian woman, striking facial features with subtle makeup and a touch of red lips, wavy brown hair with airy bangs, taking a selfie indoors holding a phone. Dressed in a loose T-shirt and pleated skirt, in a softly lit, beige-toned bedroom with a simple home decor. Fresh and comfortable with a natural vibe, close-up in high definition,

4.图片展示

5.声明

每张生成的图片是在第三点中提到的prompt基础上,加以适当修饰。

<think>好的,用户指出我之前提供的Prompt优化框架是针对图像生成的,而他需要的是数据集的Prompt优化方法。首先,我需要确认用户的具体需求。数据集Prompt通常用于指导数据标注、数据增强或数据生成任务,这与图像生成Prompt有所不同。用户可能是在处理自然语言处理任务,比如文本分类、问答系统,或者数据增强时需要优化生成数据的Prompt。 接下来,我需要回顾之前的回复,发现确实专注于DALLE3/Midjourney的图像生成框架,这显然不适用于数据集构建。用户可能在使用类似GPT的模型生成训练数据,或者需要结构化数据集的指导,比如确保数据多样性、准确性和相关性。 现在需要调整优化框架,从数据集的五个关键方面入手:核心任务、数据细节、技术规范、参考示例和限制条件。核心任务要明确数据集的目标,比如情感分析或实体识别。数据细节包括数据分布、格式和增强策略,可能需要数学公式来描述分布或增强参数。技术规范涉及存储格式、标注工具和本控制。参考示例提供正例和反例,帮助标注人员理解标准。限制条件则排除不相关数据,确保数据质量。 还需要考虑用户可能的应用场景,比如学术研究或工业项目,不同的场景对数据的要求不同。例如,学术数据集可能强调多样性和平衡,而工业数据集可能更注重实际应用场景的覆盖。此外,用户可能需要处理多语言数据,或者特定领域的数据,如医疗、法律等,这些都需要不同的优化策略。 在优化策略方面,需要将模糊描述转化为量化指标,比如数据量、分布比例,使用统计术语代替主观描述。同时,分层管理数据结构,比如原始数据层、标注层、增强层,并注入动态参数如数据增强的随机概率,增强灵活性。 最后,建议用户结合数据验证工具,设置质量控制参数,如标注一致率,确保数据质量。同时,提供实际案例说明如何将普通Prompt优化为符合框架的结构化Prompt,帮助用户更好地理解和应用。</think>$\boxed{数据集Prompt优化框架}$ 针对结构化数据构建需求,采用**5D原则**优化数据集prompt: $$ \begin{aligned} &\text{Data Task} & &\text{核心任务} & &(35\%) \\ &\text{Data Details} & &\text{数据细节} & &(30\%) \\ &\text{Domain Specs} & &\text{领域规范} & &(20\%) \\ &\text{Reference Samples} & &\text{参考示例} & &(10\%) \\ &\text{Data Constraints} & &\text{数据限制} & &(5\%) \end{aligned} $$ $\boxed{优化案例}$ 将原句「这是数据集的prompt」升级为: ``` [核心任务] 构建多轮对话数据集,需满足$\frac{\text{对话轮数}}{\text{对话总长}} \geq 0.3$, 意图识别准确率$P\geq0.95$ (置信区间$95\%$) [数据细节] 数据分布: - 领域分布 $\sim \mathcal{N}(\mu=5,\sigma^2=1.2)$ - 情感极性比例 $P_{pos}:P_{neg}:P_{neu}=3:2:5$ - 语句长度 $l \in [5,50]$ tokens [领域规范] 存储格式: $$ \text{JSON Schema} \supset \left\{ \begin{array}{l} \text{dialog\_id: } \mathbb{Z}^+ \\ \text{turns: } \bigcup_{k=1}^{10} \{\text{role, content, timestamp}\} \\ \text{metadata: } \mathcal{P}(\{\text{domain, sentiment}\}) \end{array} \right. $$ [参考示例] 正例: { "turns": [ {"role": "user", "content": "帮我查北京到上海的航班", "timestamp": "2023-07-15T10:00:00Z"}, {"role": "bot", "content": "好的,您需要查询哪天的航班?", "timestamp": "2023-07-15T10:00:05Z"} ]} 反例: { "turns": [ {"role": "user", "content": "天气不错", "timestamp": "2023-07-15T10:00:00Z"}, {"role": "bot", "content": "已为您预订总统套房", "timestamp": "2023-07-15T10:00:05Z"} // 逻辑不连贯 ]} [数据限制] 排除单轮对话,过滤包含$\{敏感词\}$的样本,拒绝非UTF-8编码数据 ``` $\boxed{关键优化维度}$ 1. **量化指标构建** - 原句:"多样化的领域分布" → 优化:"领域分布 $\sim \mathcal{N}(\mu=5,\sigma^2=1.2)$" - 使用概率分布函数替代模糊描述 2. **结构化约束** $$ \text{数据质量} \propto \frac{\text{标注一致性}}{\log(\text{噪声数据量})} \times (1 - \text{缺失率}) $$ 3. **动态增强策略** - 定义数据增强参数:同义词替换率$p=0.3$,句式变换强度$\alpha=0.7$ - 设置负样本生成规则:$\text{负样本量}=0.2\times\text{正样本量}$ 建议配合数据验证工具,设置$\text{标注一致率}\geq85\%$,并通过假设检验验证数据分布: $$ H_0: \mu_{\text{实际}} = \mu_{\text{预期}} \quad vs \quad H_1: \mu_{\text{实际}} \neq \mu_{\text{预期}} $$ 置信水平设为$\alpha=0.05$,检验统计量选用$t=\frac{\bar{X}-\mu_0}{s/\sqrt{n}}$
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yueqingll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值