序言
卷积神经网络VGGNet,出自论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》,作者Karen Simonyan∗ & Andrew Zisserman+,来自于牛津大学计算机视觉组——Visual Geometry Group, Department of Engineering Science, University of Oxford,故而简称VGGNet。Google DeepMind公司人员也一起参与了研发。
该模型获得了ImageNet Challenge 2014的图像定位第一名,图像分类第二名。
网络结构
图解
详解
创新思想
核心点
★ 更深的网络,VGG16和VGG19。
★ 以更小更多的33卷积核以代替很大单个的大卷积核,22池化核。
★ 采用Multi-Scale训练和评估模型
感悟点
[1]删繁就简三秋树,领异标新二月花。——简洁清晰,一目了然
[2]更深更有力,大力出奇迹。
[3]引入1*1卷积形式,增加训练tricks,激发了后继者脑瓜壳子。
参考论文
- Karen Simonyan, Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. 论文传送门