经典CNN结构之VGGNet 网络更深

序言

卷积神经网络VGGNet,出自论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》,作者Karen Simonyan∗ & Andrew Zisserman+,来自于牛津大学计算机视觉组——Visual Geometry Group, Department of Engineering Science, University of Oxford,故而简称VGGNet。Google DeepMind公司人员也一起参与了研发。
该模型获得了ImageNet Challenge 2014的图像定位第一名,图像分类第二名。

网络结构

图解

Architecture of VGGnet
VGG16 by yueyueniaolzp

详解

VGG16-cal by yueyueniaolzp

创新思想

核心点

★ 更深的网络,VGG16和VGG19。
★ 以更小更多的33卷积核以代替很大单个的大卷积核,22池化核。
★ 采用Multi-Scale训练和评估模型

感悟点

[1]删繁就简三秋树,领异标新二月花。——简洁清晰,一目了然
[2]更深更有力,大力出奇迹。
[3]引入1*1卷积形式,增加训练tricks,激发了后继者脑瓜壳子。

参考论文

  1. Karen Simonyan, Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. 论文传送门
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值