皮尔逊相关系数实现相似K线及其性能优化
概念介绍
相似K线是验证“历史总会重演”的一个经典产品,目前许多炒股软件都开始陆陆续续提供相似K线功能。如下图是某产品的相似K线效果图:
投资者可以根据相似K线展示的结果来观察个股可能的未来走势,从而对投资起到一定的指导作用。
本文就将简要介绍如何实现相似K线的计算,并讨论实现过程中的一些难点细节。
计算及实现
相似K线的实现主要分为两大部分,第一部分是相似度匹配计算;第二部分是排名筛选。
相似度匹配
进行相似度匹配时我们使用“皮尔逊相关系数”(Pearson product-moment correlation coefficient)来进行相关度验证。详细的“皮尔逊相关系数”的推导及演算可从网上找到相关资料。本文我们直接使用结论公式:
P X , Y = ∑ X Y − ∑ X ∑ Y N ( ∑ X 2 − ( ∑ X ) 2 N ) ( ∑ Y 2 − ( ∑ Y ) 2 N ) P_{X,Y}=\frac{\sum{XY}-\frac{\sum{X}\sum{Y}}{N}}{\sqrt{(\sum{X^2}-\frac{(\sum{X})^2}{N})(\sum{Y^2}-\frac{(\sum{Y})^2}{N})}} PX,Y=(∑X2−N(∑X)2)(∑Y