皮尔逊相关系数实现相似K线及其性能优化

本文介绍了如何使用皮尔逊相关系数计算相似K线,探讨了遍历计算、遍历计算优化、分治算法和动态规划算法,并通过JavaScript实现。针对金融投资,分析了相似K线的实战应用及其局限性,强调性能优化在全市场数据处理中的重要性。
摘要由CSDN通过智能技术生成

皮尔逊相关系数实现相似K线及其性能优化

概念介绍

相似K线是验证“历史总会重演”的一个经典产品,目前许多炒股软件都开始陆陆续续提供相似K线功能。如下图是某产品的相似K线效果图:
这里写图片描述
投资者可以根据相似K线展示的结果来观察个股可能的未来走势,从而对投资起到一定的指导作用。
本文就将简要介绍如何实现相似K线的计算,并讨论实现过程中的一些难点细节。

计算及实现

相似K线的实现主要分为两大部分,第一部分是相似度匹配计算;第二部分是排名筛选。

相似度匹配

进行相似度匹配时我们使用“皮尔逊相关系数”(Pearson product-moment correlation coefficient)来进行相关度验证。详细的“皮尔逊相关系数”的推导及演算可从网上找到相关资料。本文我们直接使用结论公式:
P X , Y = ∑ X Y − ∑ X ∑ Y N ( ∑ X 2 − ( ∑ X ) 2 N ) ( ∑ Y 2 − ( ∑ Y ) 2 N ) P_{X,Y}=\frac{\sum{XY}-\frac{\sum{X}\sum{Y}}{N}}{\sqrt{(\sum{X^2}-\frac{(\sum{X})^2}{N})(\sum{Y^2}-\frac{(\sum{Y})^2}{N})}} PX,Y=(X2N(X)2)(Y

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

响尾大菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值