注:英文引文机翻,未校。
未整理去重。
如有内容异常,请看原文。
Euler’s Formula and Fourier Transform
Posted byczxttkl October 7, 2018
Euler’s formula states that e i x = cos x + i sin x e^{ix} =\cos{x}+ i \sin{x} eix=cosx+isinx. When x = π x = \pi x=π, the formula becomes e π = − 1 e^{\pi} = -1 eπ=−1 known as Euler’s identity.
欧拉公式表明 e i x = cos x + i sin x e^{ix} = \cos{x} + i \sin{x} eix=cosx+isinx。当 x = π x = \pi x=π 时,公式变为 e π = − 1 e^{\pi} = -1 eπ=−1,称为欧拉恒等式。
An easy derivation of Euler’s formula is given in [3] and [5]. According to Maclaurin series (a special case of taylor expansion f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ” ( a ) 2 ! ( x − a ) 2 + ⋯ f(x)=f(a)+f'(a)(x-a)+\frac{f”(a)}{2!}(x-a)^2+\cdots f(x)=f(a)+f′(a)(x−a)+2!f”(a)(x−a)2+⋯ when a = 0 a=0 a=0),
一个简单的欧拉公式推导见于 [3] 和 [5]。根据麦克劳林级数(泰勒展开的一个特例 f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯ 当 a = 0 a = 0 a=0 时),
e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + ⋯ = 2 e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots =2 ex=1+x+2!x2+3!x3+4!x4+⋯=2
Therefore, replacing x x x with i x ix ix, we have
因此,将 x x x 替换为 i x ix ix,我们得到
e i x = 1 + i x − x 2 2 ! − x 3 3 ! + x 4 4 ! + x 5 5 ! − ⋯ = 2 e^{ix}=1+ix-\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}-\cdots =2 eix=1+ix−2!x2−3!x3+4!x4+5!x5−⋯=2
By Maclaurin series, we also have
根据麦克劳林级数,我们还有
cos x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ sin x = x − x 3 3 ! + x 5 5 ! − ⋯ = 2 \cos{x}=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!} + \cdots \newline \sin{x}=x -\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots =2 cosx=1−2!x2+4!x4−6!x6+⋯sinx=x−3!x3+5!x5−⋯=2
Therefore, we can rewrite e i x e^{ix} eix as e i x = cos x + i sin x e^{ix}=\cos{x}+i\sin{x} eix=cosx+isinx
因此,我们可以将 e i x e^{ix} eix 重写为 e i x = cos x + i sin x e^{ix} = \cos{x} + i \sin{x} eix=cosx+isinx。
Intuitive understanding of e i x = cos x + i sin x e^{ix}=\cos{x}+i\sin{x} eix=cosx+isinx is illustrated in [1] together with its own video [4], as well as in 3Blue1Brown’s two videos [6][7].
e i x = cos x + i sin x e^{ix} = \cos{x} + i \sin{x} eix=cosx+isinx 的直观理解在 [1] 中有说明,连同其自己的视频 [4],以及在 3Blue1Brown 的两个视频 [6][7] 中。
First, from a conventional view of coordinate system, e i x = cos x + i sin