从 dropout 到 Inception Network

本文探讨了dropout、maxout、network in network和Inception Network之间的联系,展示了深度学习中层间函数估计的发展。dropout通过随机丢弃节点实现集成训练,maxout通过取最大值扩展层间表示,network in network使用微网络增强局部模型,而Inception Network则通过并行结构捕捉多尺度特征,进一步优化了表达能力。
摘要由CSDN通过智能技术生成
前言

  乍看两者好像差的很远的样子,现梳理下Inception的发展脉络,发现其中还是有很深的渊源的。dropout是ensemble by training方法,maxout则在dropout的思路上,扩展出了新的approximate路子,对approx的进一步优化,则有了Network in Network,对特征的表达需求更高(也是对网络深度的探索),发展出了Inception Network-v1Inception Network-v3始终围绕着层间函数的估计而不断延伸。

dropout

  dropout的基本思想:训练时,对节点(输入层或者隐藏层)随机drop的方式,从而形成共享参数下的ensemble的训练结构,Andreas称之为ensemble by training,本质上是集成的思想。其他的ensemble的方法,可以去这篇博客ResNet的一波两折的小结里去看。

maxout

  基于drop是描述层间函数的一种有效手段,Goodfellow提出了max-out的思路。对层间参数扩展为3-dim,对每个输出节点,都有 k k 个选择,取其最大值做该节点输出。
  假设有 d 维输入, m m 维输出,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值