Python库numpy中的svd分解和Matlab中的svd的一点区别

本文对比了在Python的numpy库和Matlab中对相同数据进行Singular Value Decomposition (SVD)分解的结果。详细展示了两者输出的U、V矩阵和S奇异值矩阵的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面是两个测试,同样的数据,不同的版本,请诸君仔细看来:

1.Matlab版SVD分解

H = [3.16991321031250,52.4425641326457,2.73475152482102;-8.76695007100685,43.4831885343255,-37.1705395356264;-1.59218748085971,-24.3510937156625,12.8339630267640];

[U,S,V] = svd(H);

 得出来的结果

U =
    0.6124    0.7695   -0.1814
    0.7073   -0.6357   -0.3091
   -0.3531    0.0610   -0.9336

V =
   -0.0479    0.2651    0.9630
    0.9249    0.3759   -0.0575
   -0.3772    0.8880   -0.2631
S =
   77.2740         0         0
         0   29.8639         0
         0         0    3.7601

2.Python版SVD分解

from numpy import *

def test():
    Base = array([[1.92028349427775,0.938200267748656,8.61139811393332,6.71431139674026,3.47712671277525,2.62145317727807,2.42785357820962,3.59228
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值