相关滤波KCF详细推导

1. 一维岭回归(脊回归)

设训练样本集 ( x i , y i ) \left(x_{i}, y_{i}\right) (xi,yi),其中, x i x_i xi为样本, y i y_i yi为样本标签,其回归表达式为 f ( x i ) = w T x i f\left(x_{i}\right)=w^{T} x_{i} f(xi)=wTxi,列向量 w w w是样本 x i x_i xi的权重系数,可通过最小二乘法求解:
min ⁡ w [ f ( x i ) − y i ] 2 + λ ∥ w ∥ 2 \min _{w} \left[f\left(x_{i}\right)-y_{i}\right]^{2}+\lambda\|w\|^{2} wmin[f(xi)yi]2+λw2其中, λ \lambda λ是正则化参数,也称岭系数,防止发生过拟合。
将上式写成矩阵形式为:
g ( w ) = ∥ X w − y ∥ 2 + λ ∥ w ∥ 2 g(w)=\left\|Xw-y\right\|^{2}+\lambda\|w\|^{2} g(w)=Xwy2+λw2其中,样本矩阵 X = [ x 1 , x 2 , ⋯   , x n ] T X=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T} X=[x1,x2,,xn]T的每一行 x i T x_{i}^{T} xiT为一个样本, y y y为列向量,分量 y i y_i yi为对应样本 x i T x_{i}^{T} xiT的标签。 g ( w ) g(w) g(w) g ′ ( w ) g^{\prime}(w) g(w)求解过程如下:
g ( w ) = ∥ X w − y ∥ 2 + λ ∥ w ∥ 2 = ( w T X T − y T ) ( X w − y ) + λ ∥ w ∥ 2 = w T X T X w − w T X T y − y T X w + y T y + λ ∥ w ∥ 2 \begin{aligned} g(w) &=\|X w-y\|^{2}+\lambda\|w\|^{2} \\ &=\left(w^{T} X^{T}-y^{T}\right)(X w-y)+\lambda\|w\|^{2} \\ &=w^{T} X^{T} X w-w^{T} X^{T} y-y^{T} X w+y^{T} y+\lambda\|w\|^{2} \end{aligned} g(w)=Xwy2+λw2=(wTXTyT)(Xwy)+λw2=wTXTXwwTXTyyTXw+yTy+λw2则:
g ′ ( w ) = ∂ ( w T X T X w − w T X T y − y T X w + y T y + λ ∥ w ∥ 2 ) ∂ w = X T X w + X T X w − X T y − X T y + 2 λ w = 2 ( X T X w − X T y + λ w ) \begin{aligned} g^{\prime}(w) &=\frac{\partial\left(w^{T} X^{T} X w-w^{T} X^{T} y-y^{T} X w+y^{T} y+\lambda\|w\|^{2}\right)}{\partial w} \\ &=X^{T} X w+X^{T} X w-X^{T} y-X^{T} y+2 \lambda w \\ &=2\left(X^{T} X w-X^{T} y+\lambda w\right) \end{aligned} g(w)=w(wTXTXwwTXTyyTXw+yTy+λw2)=XTXw+XTXwXTyXTy+2λw=2(XTXwXTy+λw) g ′ ( w ) = 0 g^{\prime}(w)=0 g(w)=0,可得:
w = ( X T X + λ I ) − 1 X T y w=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y w=(XTX+λI)1XTy由于后面将进行傅里叶矩阵变换,牵涉到复数矩阵,所以将上式扩展到复数域中的形式为:
w = ( X H X + λ I ) − 1 X H y w=\left(X^{H} X+\lambda I\right)^{-1} X^{H} y w=(XHX+λI)1XHy其中, X H X^{H} XH表示复共轭转置矩阵。

2. 循环矩阵(循环位移)

KCF算法中所有的训练样本都是由目标样本循环移位得到的,向量的循环可由排列矩阵得到,如一维向量初始排列为: x = [ x 1 , x 2 , ⋯   , x n ] T \mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T} x=[x1,x2,,xn]T,排列矩阵为:
P = [ 0 0 ⋯ 0 1 1 0 ⋯ 0 0 0 1 ⋯ 0 0 ⋮ 0 0 ⋯ 1 0 ] P=\left[\begin{array}{ccccc} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & & \vdots & & \\ 0 & 0 & \cdots & 1 & 0 \end{array}\right] P=0100001000011000它的一次循环移位为:
P x = [ x n , x 1 , x 2 , ⋯   , x n − 1 ] T P \mathbf{x}=\left[x_{n}, x_{1}, x_{2}, \cdots, x_{n-1}\right]^{T} Px=[xn,x1,x2,,xn1]T对于二维矩阵图像,可以看成是在两个维度方向分别对目标样本进行循环移位得到的。如二维图像初始排列为:
X = [ 1 2 3 4 5 6 7 8 9 ] X=\left[\begin{array}{lll} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right] X=147258369排列矩阵为:
P = [ 0 0 1 1 0 0 0 1 0 ] , Q = [ 0 1 0 0 0 1 1 0 0 ] P=\left[\begin{array}{lll} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right],Q=\left[\begin{array}{lll} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right] P=010001100Q=

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值