语义分割系列-4 DeepLabV1-V3+(pytorch实现)

DeepLabV1-V3+系列很好的展示了一个模型是如何在发现问题->模型更新->解决问题这一流程中迭代进步的。每一次发现问题,再提出新的模块去解决,在模型中实现,获得好的效果。就这样,DeepLab从V1->V2->V3->V3+,DeepLab系列就像人工智能,在一步步进步,一点点解决问题。

因此,本文将从DeepLabV1开始,DeepLabV3+结束,讲述DeepLab家族的故事。并会在CamVid数据集上进行复现。所有代码都基于Pytorch。


DeepLab1

论文地址:DeepLab1:SEMANTIC IMAGE SEGMENTATION WITH DEEP CON- VOLUTIONAL NETS AND FULLY CONNECTED CRFS

概述:

原论文作者在发现DCNN(深度神经网络,Deep Convolutional Neural Networks)可以很容易解决分类问题却难以解决像素级别的分割问题后,进行了思考。作者认为,DCNN具有很好的平移不变性,所以在分类问题上效果很好,但是多次池化和下采样导致位置信息丢失,而空间的不变性导致了细节信息的丢失。所以,论文中提出了两个要解决的问题:

  1. 多次池化和下采样导致位置信息丢失。
  2. 空间的不变性导致细节信息的丢失。

既然提出了两个需要解决的问题,作者在这两个问题上分别提出了两个解决方案:

  1. 空洞卷积
  2. 全连接条件随机场(Fully-connected Conditional Random Field,CRF)

空洞卷积

可以说空洞卷积是DeepLab系列的灵魂之作,DCNN网络苦于感受野不深的问题已久。 2016年一篇论文中提出了有效感受野这一概念。原来的办法只能通过不停的堆叠卷积层或者增大卷积核,以求达到增加感受野的目的。但是呢,增大卷积核运算量会比较大,在当时是不可接受的(现在也有人开始研究超大卷积核的模型结构,比如2022的CVPR中RepLknet)。而空洞卷积的提出,则极大解决了感受野不够大的问题(至少在当时是这样的)。

图1 空洞卷积感受野

图1中,a是普通的卷积能看到的感受野大小,卷积完成后每一个红点能看到前一层图像的3x3区域。b是dialation=2的空洞卷积,可以看到,同样是9个红色点参与运算,却可以看到7x7的区域。c是dialation=4的空洞卷积,9个点参与运算却可以看到15x15的区域。

空洞卷积和普通卷积的感受野就很显而易见了,而且最重要的是,空洞卷积不会增加额外的训练参数,在当时的硬件限制的情况下,相比于扩大卷积核或叠加卷积层,这种又节省参数又提升感受野的操作是很有市场的。

但是呢,空洞卷积自然也是有缺点的,就是网格问题(gridding问题)。但后续也有人会提出新的方法来解决这个问题。在此就不再赘述。总之,空洞卷积横空出世。

图2 网格化问题

 全连接条件随机场

作者在论文中提出使用全连接条件随机场(CRF)来解决分割中不平滑的问题和修复一些小的结构。

图3 CRF迭代次数对结果的影响

 可以很明显的看到,随着CRF迭代次数增加,对飞机的分割效果越来越好。

模型结构

DeepLabV1的模型结构十分简单,基于VGG16做了一些改动。将VGG16的最后三层全连接层替换为卷积层。其中,第十一、十二、十三层为dilation=2的空洞卷积,第十四层为dilation=4的空洞卷积。

图4 DeepLabV1结构

 图中省去了CRF的结构,虽然不用CRF,但是DeepLabV1也能实现一个很好的效果。


DeepLabV2

DeepLabV1提出后不久,作者又发现了新问题--图像中存在多尺度的物体。

对于多尺度的物体,原来的模型效果堪忧。

DeepLabV2论文地址。

于是就提出了新的解决方法,就是大名鼎鼎的ASPP(Atrous Spatial Pyramid Pooling)

ASPP

图5 ASPP模型

 ASPP就是在一层上并行多个不同dilation的空洞卷积,所有空洞卷积同步进行,用来获得不同尺度上的感受野,以提升不同尺度的物体分割效果。简单点说就是,让模型能同时看清楚大的物体和小的物体。

图6 ASPP模块

 ASPP的实现也较为简单,本文给出了ASPP在pytorch框架上的实现。

#DeepLabv2使用的ASPPmodule
class ASPP_module(nn.ModuleList):
    def __init__(self, in_channels, out_channels, dilation_list=[6, 12, 18, 24]):
        super(ASPP_module, self).__init__()
        self.dilation_list = dilation_list
        for dia_rate in self.dilation_list:
            self.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, kernel_size=1 if dia_rate==1 else 3, dilation=dia_rate, padding=0 if dia_rate==1 else dia_rate),
                    nn.Conv2d(out_channels, out_channels, kernel_size=1),
                    nn.Conv2d(out_channels, out_channels, kernel_size=1),
                )
            )
            
    def forward(self, x):
        outputs = []
        for aspp_module in self:
            outputs.append(aspp_module(x))
        return torch.cat(outputs, 1)

DeepLabV3

当然,老问题解决了,新问题自然会出现。

因为ResNet的提出,作者开始思考,更深结构下,空洞卷积能实现什么样的效果?以及,ASPP结构是否能再度优化?

因此,在DeepLabV3的论文中,作者做了两部分的工作:

  1. 探索更深层的模型下,空洞卷积的效果。
  2. ASPP的优化。

论文的名字也取得很有含义,Rethinking Atrous Convolution for Semantic Image Segmentation

Rethinking!

DeepLab的故事告诉我们要多Thinking和Rethinking。

Going Deeper with Atrous Convolution

作者的第一个思路就是更深层的空洞卷积。ResNet的提出,让网络模型达到101(还能更深)。

图7 空洞卷积在深层CNN中的应用

 作者做了一个对比试验,将ResNet深层的模块替换为空洞卷积,很显然,空洞卷积获得了比较大的感受野,而且可以捕获远端的信息,在最后一层中进行汇聚。当然,作者也提到,dilation rate的设计十分重要,不当的设计会造成精度降低。当然,作者也为我们做完实验并设计好了rate的组合。

Atrous Spatial Pyramid Pooling

作者再次提到了ASPP结构,并做了一定的优化。

因为作者在上述实验的情况中发现,dilation rate组合不当的情况下,3x3的卷积核会退化成1x1的卷积。因此,作者设计实验并重新调整了rate组合,从V2中的[6, 12, 18, 24] 改进成[1, 6, 12, 18]。

当然,作者觉得空洞卷积损失了一定信息,于是在ASPP上,并行了一个全局平均池化(图8 b),来保存全局的上下文信息。

图8 ASPP和全局平均池化

 至此,V3的改进就算完成了。

#DeepLabV3版本的ASPP
class ASPP_module(nn.ModuleList):
    def __init__(self, in_channels, out_channels, dilation_list=[1, 6, 12, 18]):
        super(ASPP_module, self).__init__()
        self.dilation_list = dilation_list
        for dia_rate in self.dilation_list:
            self.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, kernel_size=1 if dia_rate==1 else 3, dilation=dia_rate, padding=0 if dia_rate==1 else dia_rate),
                    nn.BatchNorm2d(out_channels),
                    nn.ReLU()
                )
            )
            
    def forward(self, x):
        outputs = []
        for aspp_module in self:
            outputs.append(aspp_module(x))
        return torch.cat(outputs, 1)

DeepLabV3+

当然了,你V3 Rethinking就Rethinking了一个深层结构和ASPP,级联结构怎么不加呢?

所以DeepLabV3+考虑了级联结构,来增加对上下文的理解。

论文地址:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

名字就叫,语义分割中Encoder-Decoder的ASPP应用。

模型结构

到这一步,就比较简单了。作者将ASPP加入到Encoder-decoder结构中。

图9 Encoder-Decoder+ASPP

 再加上级联结构,作者就提出了DeepLabV3+模型。

图10 DeepLabV3+模型结构

 当然,在作者写论文那个时期,在卷积模块上,Depthwise separable convolution(深度可分离卷积)又横空出世,作者开始思考能否将深度可分离卷积结合空洞卷积?实验证明是可行的,于是,作者提出了一个修改的Xception模型。说简单点,就是在深度可分离卷积上应用空洞卷积。

图11 深度可分离空洞卷积

图12 作者提出的经过修改的Xception

 替换了一些卷积层为有不同dilation的深度可分离卷积。不过这和DeepLabV3+没什么关系。这里就不再赘述。


模型复现

DeepLabV1

VGG16作为backbone

import torch
import torch.nn as nn
class VGG13(nn.Module):
    def __init__(self):
        super(VGG13, self).__init__()
        self.stage_1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        )
        
        self.stage_2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        )
        
        self.stage_3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        )     
        
        self.stage_4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(2,stride=1, padding=1),
        )
        
        self.stage_5 = nn.Sequential(
            #空洞卷积
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(2, stride=1),
        ) 
        
    def forward(self, x):
        x = x.float()
        x1 = self.stage_1(x)
        x2 = self.stage_2(x1)
        x3 = self.stage_3(x2)
        x4 = self.stage_4(x3)
        x5 = self.stage_5(x4)
        return [x1, x2, x3, x4, x5]
class DeepLabV1(nn.Module):
    def __init__(self, num_classes):
        super(DeepLabV1, self).__init__()
        #前13层是VGG16的前13层,分为5个stage
        self.num_classes = num_classes
        self.backbone = VGG13()
        
        self.stage_1 = nn.Sequential(
            #空洞卷积
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=4, dilation=4),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            
            nn.Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            
            nn.Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(),
        )
        self.final = nn.Sequential(
            nn.Conv2d(512, self.num_classes, kernel_size=3, padding=1)
        )
        
    def forward(self, x):
        #调用VGG16的前13层 VGG13
        x = self.backbone(x)[-1]
        x = self.stage_1(x)
        x = nn.functional.interpolate(input=x,scale_factor=8,mode='bilinear')
        x = self.final(x)
        return x

DeepLabV2

还是用VGG16作为backbone,同时写了ASPP模块。

import torch
import torch.nn as nn
class ASPP_module(nn.ModuleList):
    def __init__(self, in_channels, out_channels, dilation_list=[6, 12, 18, 24]):
        super(ASPP_module, self).__init__()
        self.dilation_list = dilation_list
        for dia_rate in self.dilation_list:
            self.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, kernel_size=1 if dia_rate==1 else 3, dilation=dia_rate, padding=0 if dia_rate==1 else dia_rate),
                    nn.Conv2d(out_channels, out_channels, kernel_size=1),
                    nn.Conv2d(out_channels, out_channels, kernel_size=1),
                )
            )
            
    def forward(self, x):
        outputs = []
        for aspp_module in self:
            outputs.append(aspp_module(x))
        return torch.cat(outputs, 1)


class DeepLabV2(nn.Module):
    def __init__(self, num_classes):
        super(DeepLabV2, self).__init__()
        self.num_classes = num_classes
        self.ASPP_module = ASPP_module(512,256) 
        self.backbone = VGG13()
        self.final = nn.Sequential(
            nn.Conv2d(256*4, 256, kernel_size=3, padding=1),
            nn.Conv2d(256, self.num_classes, kernel_size=1)
        )
    def forward(self, x):
        x = self.backbone(x)[-1]
        x = self.ASPP_module(x)
        x = nn.functional.interpolate(x ,scale_factor=8,mode='bilinear', align_corners=True)
        x = self.final(x)
        return x
        

DeepLabV3

DeepLabV3的ASPP与之前略有不同,所有重写了一个。

当然这里作者没有使用Resnet来实现,而是继承了上部分的VGG16。所以和原文有一些出入。这里可以改为ResNet50或101。

import torch
import torch.nn as nn
class ASPP_module(nn.ModuleList):
    def __init__(self, in_channels, out_channels, dilation_list=[1, 6, 12, 18]):
        super(ASPP_module, self).__init__()
        self.dilation_list = dilation_list
        for dia_rate in self.dilation_list:
            self.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, kernel_size=1 if dia_rate==1 else 3, dilation=dia_rate, padding=0 if dia_rate==1 else dia_rate),
                    nn.BatchNorm2d(out_channels),
                    nn.ReLU()
                )
            )
            
    def forward(self, x):
        outputs = []
        for aspp_module in self:
            outputs.append(aspp_module(x))
        return torch.cat(outputs, 1)

class DeepLabV3(nn.Module):
    def __init__(self, num_classes):
        super(DeepLabV3, self).__init__()
        self.num_classes = num_classes
        self.ASPP_module = ASPP_module(512,256,dilation_list=[1,6,12,18]) 
        self.backbone = VGG13()
        self.final = nn.Sequential(
            nn.Conv2d(256*4+256, 256, kernel_size=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, self.num_classes, kernel_size=1)
        )
        self.avg_pool = nn.Sequential(
            nn.AdaptiveAvgPool2d((1)),
            nn.Conv2d(512, 256, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True))
        
    def forward(self, x):
        x = self.backbone(x)[-1]
        x_1 = self.ASPP_module(x)
        x_2 = nn.functional.interpolate(self.avg_pool(x), size=(x.size(2), x.size(3)), mode='bilinear', align_corners=True)
        x = torch.cat([x_1, x_2], 1)
        x = nn.functional.interpolate(input=x ,scale_factor=8,mode='bilinear', align_corners=True)
        x = self.final(x)
        return x

DeepLabV3+

同样,这里仍然使用VGG,不过做了一点变动。可以改为ResNet50或101。

import torch
import torch.nn as nn

class VGG13_16x(nn.Module):
    def __init__(self):
        super(VGG13_16x, self).__init__()
        self.stage_1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        )
        
        self.stage_2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        )
        
        self.stage_3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            #nn.MaxPool2d(2,2),
        )     
        
        self.stage_4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        )
        
        self.stage_5 = nn.Sequential(
            #空洞卷积
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        ) 
        
    def forward(self, x):
        x1 = self.stage_1(x)
        x2 = self.stage_2(x1)
        x3 = self.stage_3(x2)
        x4 = self.stage_4(x3)
        x5 = self.stage_5(x4)
        return [x1, x2, x3, x4, x5]

class ASPP_module(nn.ModuleList):
    def __init__(self, in_channels, out_channels, dilation_list=[6, 12, 18, 24]):
        super(ASPP_module, self).__init__()
        self.dilation_list = dilation_list
        for dia_rate in self.dilation_list:
            self.append(
                nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, kernel_size=1 if dia_rate==1 else 3, dilation=dia_rate, padding=0 if dia_rate==1 else dia_rate),
                    nn.BatchNorm2d(out_channels),
                    nn.ReLU()
                )
            )
            
    def forward(self, x):
        outputs = []
        for aspp_module in self:
            outputs.append(aspp_module(x))
        return torch.cat(outputs, 1)

class DeepLabV3Plus(nn.Module):
    def __init__(self, num_classes):
        super(DeepLabV3Plus, self).__init__()
        self.backbone = VGG13_16x()
        self.ASPP_module = ASPP_module(512,256,[1,6,12,18])
        self.low_feature = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
        )
        
        self.num_classes = num_classes
        
        self.avg_pool = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(512, 256, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True))
        
        self.conv1 = nn.Sequential(
            nn.Conv2d(256*5, 256, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
        )
        

        self.conv2 = nn.Sequential(
            nn.Conv2d(256*2, self.num_classes, kernel_size=3, padding=1),
            nn.BatchNorm2d(self.num_classes),
            nn.ReLU(),
        )
        
        self.conv3 = nn.Sequential(
            nn.Conv2d(self.num_classes, self.num_classes, kernel_size=3, padding=1),
        )    
        
    def forward(self, x):
        x = self.backbone(x)
        
        low_feature = self.low_feature(x[-3])    
        x_1 = self.ASPP_module(x[-1])
        x_2 = nn.functional.interpolate(self.avg_pool(x[-1]), size=(x[-1].size(2), x[-1].size(3)), mode='bilinear', align_corners=True) 
        x = torch.cat([x_1, x_2], 1)
        x = self.conv1(x)
        x = nn.functional.interpolate(input=x ,scale_factor=4,mode='bilinear')
        x = torch.cat([x, low_feature], 1)
        x = self.conv2(x)
        x = nn.functional.interpolate(input=x ,scale_factor=4,mode='bilinear')
        x = self.conv3(x)
        return x
        

构建数据集-Camvid

构建数据集的步骤可从我的另一篇博客中找到。

# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2


torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
    """CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
    
    Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline 
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing 
            (e.g. noralization, shape manipulation, etc.)
    """
    
    def __init__(self, images_dir, masks_dir):
        self.transform = A.Compose([
            A.Resize(448, 448),
            A.HorizontalFlip(),
            A.VerticalFlip(),
            A.Normalize(),
            ToTensorV2(),
        ]) 
        self.ids = os.listdir(images_dir)
        self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
        self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]

    
    def __getitem__(self, i):
        # read data
        image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
        mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
        image = self.transform(image=image,mask=mask)
        
        return image['image'], image['mask'][:,:,0]
        
    def __len__(self):
        return len(self.ids)
    
    
# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
    

train_dataset = CamVidDataset(
    x_train_dir, 
    y_train_dir, 
)
val_dataset = CamVidDataset(
    x_valid_dir, 
    y_valid_dir, 
)

train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=True,drop_last=True)

模型训练

#载入预训练权重, 500M还挺大的 下载地址:https://download.pytorch.org/models/vgg16_bn-6c64b313.pth
#model = DeepLabV1(32+1).cuda()
#model = DeepLabV2(32+1).cuda()
#model = DeepLabV3(32+1).cuda()
model = DeepLabV3Plus(32+1).cuda()
model.load_state_dict(torch.load(r"checkpoints/vgg16_bn-6c64b313.pth"),strict=False)
from d2l import torch as d2l
from tqdm import tqdm
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss()
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(),lr=0.1)
#训练50轮
epochs_num = 50
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
               devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples,
        # no. of predictions
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(
                net, features, labels.long(), loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
        print(f'loss {metric[0] / metric[2]:.3f}, train acc '
              f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
        print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
              f'{str(devices)}')

#开始训练
train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num)

训练结果

模型train_acctest_acc
DeepLabV181.4%81.5%
DeepLabV289.6%87.7%
DeepLabV390.6%88.4%
DeepLabV3+92.0%90.0%

DeepLabV1 

DeepLabV2

DeepLabV3

DeepLabV3+

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yumaomi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值