语义分割系列14-DMNet(pytorch)实现

DMNet:《Dynamic Multi-Scale Filters for Semantic Segmentation》

发布于2019ICCV。

有意思的是,DMNet的作者和APCNet的作者是同一个人,而且,DMNet和APCNet的结构十分相似,也就是这个作者,同一年做了两个方案,分别发在了ICCV和CVPR。

先前写过的APCNet的文章地址:语义分割系列12-APCNet(pytorch实现)


引文

DMNet论文想要解决的是困扰已久的多尺度分割问题(Multi-scale)

在先前的工作中:

  • DeepLab系列,用的是空洞卷积(dilated conv、atrous conv)来扩大感受野以捕获多尺度信息,但是,这种卷积操作引入了大量的计算量,而且容易引起局部邻域的信息丢失。同时,空洞卷积有一个比较致命的问题,就是这个扩张数率的选择,选择过大的速率,小物体就会丢失信息,导致一些网格效应、边界效应。
  • Inception,用的是多个不同大小的卷积核并行,来处理多尺度问题,同样引入了相当一部分的计算量,而且,参数多了就容易导致过拟合。
  • PSPNet提出的池化金字塔(PPM)是一个比较有效的方法,也是APCNet和本文模型的思想主要来源,毕竟APCNet和DMNet都有PPM的影子。PPM通过不同大小的池化来捕获多尺度的上下文信息。不过这种捕获信息的方式也会损失一定的信息(当然这是废话的,对特征图进行池化操作必然损失信息)。

作者说了这么多别人不好,然后就开始引入自己怎么怎么好↓

本文亮点:

  • 提出了端到端的DMNet模型,可以利用动态多尺度的过滤器对语义进行细分,相对于之前模型参数固定的方法,DMNet可以对图像的内容进行自适应的变化。
  • 提出了动态卷积模块,来捕获多尺度语义信息,每一个DCM模块都可以处理与输入尺寸相关的比例变化。

模型

(吐槽:与 APCNet一模一样的架构图)

图1 DMNet

和PSPNet、APCNet的架构一样,只是设计了几个拥有不同k值的DCM模块。

DCM模块

所以,这篇文章的重点内容在于DCM模块的设计。

文章中写了这么一句话:

The goal of DCM is to capture a specific scale representation for the input image adaptively.

DCM模块的目标是自适应捕获输入图像的特定比例表示。

DCM模块内容如下,主要的亮点在于绿色框内的Context-aware filters。

图2 DCM

作者称这个结构为上下文感知过滤器(Context-aware filters)。在这些filters中嵌入了丰富的内容和高级语义信息而且这些filters能够适应输入的图像,捕获图像内部的不同尺寸信息。

DCM结构比较简单,输入的特征图x实现需要经过一个卷积层来减少通道数。x经过一个AdaptiveAvgPooling(k),k值是自定义的一个量。经过卷积后生成k×k×512大小的gk(x),最后用一个Depth-wise conv将上下两个分支的特征图融合。就得到了一个DCM模块的输出。最后像APCNet一样,把所有特征融合起来就算完成了这个网络的全部内容。


复现

backbone-ResNet50

import torch
import torch.nn as nn

class BasicBlock(nn.Module):
    expansion: int = 4
    def __init__(self, inplanes, planes, stride = 1, downsample = None, groups = 1,
        base_width = 64, dilation = 1, norm_layer = None):
        
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = nn.Conv2d(inplanes, planes ,kernel_size=3, stride=stride, 
                               padding=dilation,groups=groups, bias=False,dilation=dilation)
        
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(planes, planes ,kernel_size=3, stride=stride, 
                               padding=dilation,groups=groups, bias=False,dilation=dilation)
        
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample= None,
        groups = 1, base_width = 64, dilation = 1, norm_layer = None,):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=1, bias=False)
        self.bn1 = norm_layer(width)
        self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, bias=False, padding=dilation, dilation=dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=1, bias=False)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(
        self,block, layers,num_classes = 1000, zero_init_residual = False, groups = 1,
        width_per_group = 64, replace_stride_with_dilation = None, norm_layer = None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer
        self.inplanes = 64
        self.dilation = 2
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
            
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=1, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]

    def _make_layer(
        self,
        block,
        planes,
        blocks,
        stride = 1,
        dilate = False,
    ):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = stride
            
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,  planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                norm_layer(planes * block.expansion))

        layers = []
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
        return nn.Sequential(*layers)

    def _forward_impl(self, x):

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        
        return x

    def forward(self, x) :
        return self._forward_impl(x)
    def _resnet(block, layers, pretrained_path = None, **kwargs,):
        model = ResNet(block, layers, **kwargs)
        if pretrained_path is not None:
            model.load_state_dict(torch.load(pretrained_path),  strict=False)
        return model
    
    def resnet50(pretrained_path=None, **kwargs):
        return ResNet._resnet(Bottleneck, [3, 4, 6, 3],pretrained_path,**kwargs)
    
    def resnet101(pretrained_path=None, **kwargs):
        return ResNet._resnet(Bottleneck, [3, 4, 23, 3],pretrained_path,**kwargs)

DMNet

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import Resize
class DCMModle(nn.Module):
    def __init__(self, in_channels=2048, channels=512, filter_size=1, fusion=True):
        super(DCMModle, self).__init__()
        self.filter_size = filter_size
        self.in_channels = in_channels
        self.channels = channels
        self.fusion = fusion
        
        # Global Information vector
        self.reduce_Conv = nn.Conv2d(self.in_channels, self.channels, 1)
        self.filter = nn.AdaptiveAvgPool2d(self.filter_size)
        
        self.filter_gen_conv = nn.Conv2d(self.in_channels, self.channels, 1, 1,
                                         0)
        
        self.residual_conv = nn.Conv2d(self.channels, self.channels, 1)
        self.global_info = nn.Conv2d(self.channels, self.channels, 1)
        self.gla = nn.Conv2d(self.channels, self.filter_size**2, 1, 1, 0)
        
        self.activate = nn.Sequential(nn.BatchNorm2d(self.channels),
                                     nn.ReLU()
                                     )
        if self.fusion:
            self.fusion_conv = nn.Conv2d(self.channels, self.channels, 1)


    def forward(self, x):
        b, c, h, w = x.shape
        generted_filter = self.filter_gen_conv(self.filter(x)).view(b, self.channels, self.filter_size, self.filter_size)
        x = self.reduce_Conv(x)
        
        c = self.channels
        # [1, b * c, h, w], c = self.channels
        x = x.view(1, b * c, h, w)
        # [b * c, 1, filter_size, filter_size]
        generted_filter = generted_filter.view(b * c, 1, self.filter_size,
                                               self.filter_size)
        
        pad = (self.filter_size - 1) // 2
        
        if (self.filter_size - 1) % 2 == 0:
            p2d = (pad, pad, pad, pad)
        else:
            p2d = (pad + 1, pad, pad + 1, pad)
            
        x = F.pad(input=x, pad=p2d, mode='constant', value=0)
        
        # [1, b * c, h, w]
        output = nn.functional.conv2d(input=x, weight=generted_filter, groups=b * c)
        # [b, c, h, w]
        output = output.view(b, c, h, w)
        
        output = self.activate(output)

        if self.fusion:
            output = self.fusion_conv(output)

        return output
    
    
class DCMModuleList(nn.ModuleList):
    def __init__(self, filter_sizes = [1,2,3,6], in_channels = 2048, channels = 512):
        super(DCMModuleList, self).__init__()
        self.filter_sizes = filter_sizes
        self.in_channels = in_channels
        self.channels = channels
        
        for filter_size in self.filter_sizes:
            self.append(
                DCMModle(in_channels, channels, filter_size)
            )
            
    def forward(self, x):
        out = []
        for DCM in self:
            DCM_out = DCM(x)
            out.append(DCM_out)
        return out
    
class DMNet(nn.Module):
    def __init__(self, num_classes):
        super(DMNet, self).__init__()
        self.num_classes = num_classes
        self.backbone = ResNet.resnet50(replace_stride_with_dilation=[1,2,4])
        self.in_channels = 2048
        self.channels = 512
        self.DMNet_pyramid = DCMModuleList(filter_sizes=[1,2,3,6], in_channels=self.in_channels, channels=self.channels)
        self.conv1 = nn.Sequential(
            nn.Conv2d(4*self.channels + self.in_channels, self.channels, 3, padding=1),
            nn.BatchNorm2d(self.channels),
            nn.ReLU()
        )
        self.cls_conv = nn.Conv2d(self.channels, self.num_classes, 3, padding=1)
        
    def forward(self, x):
        x = self.backbone(x)
        DM_out = self.DMNet_pyramid(x)
        DM_out.append(x)
        x = torch.cat(DM_out, dim=1)
        x = self.conv1(x)
        x = Resize((8*x.shape[-2], 8*x.shape[-1]))(x)
        x = self.cls_conv(x)
        return x
        

数据集-Camvid

# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2

torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
    """CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
    
    Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline 
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing 
            (e.g. noralization, shape manipulation, etc.)
    """
    
    def __init__(self, images_dir, masks_dir):
        self.transform = A.Compose([
            A.Resize(224, 224),
            A.HorizontalFlip(),
            A.VerticalFlip(),
            A.Normalize(),
            ToTensorV2(),
        ]) 
        self.ids = os.listdir(images_dir)
        self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
        self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]

    
    def __getitem__(self, i):
        # read data
        image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
        mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
        image = self.transform(image=image,mask=mask)
        
        return image['image'], image['mask'][:,:,0]
        
    def __len__(self):
        return len(self.ids)
    
    
# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
    
train_dataset = CamVidDataset(
    x_train_dir, 
    y_train_dir, 
)
val_dataset = CamVidDataset(
    x_valid_dir, 
    y_valid_dir, 
)

train_loader = DataLoader(train_dataset, batch_size=24, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=24, shuffle=True,drop_last=True)

训练

model = DMNet(num_classes=33).cuda()
#model.load_state_dict(torch.load(r"checkpoints/resnet101-5d3b4d8f.pth"), strict=False)
from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5, last_epoch=-1)

#训练50轮
epochs_num = 100
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,scheduler,
               devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    
    loss_list = []
    train_acc_list = []
    test_acc_list = []
    epochs_list = []
    time_list = []
    
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples,
        # no. of predictions
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(
                net, features, labels.long(), loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
        scheduler.step()
        print(f"epoch {epoch+1} --- loss {metric[0] / metric[2]:.3f} ---  train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- cost time {timer.sum()}")
        
        #---------保存训练数据---------------
        df = pd.DataFrame()
        loss_list.append(metric[0] / metric[2])
        train_acc_list.append(metric[1] / metric[3])
        test_acc_list.append(test_acc)
        epochs_list.append(epoch+1)
        time_list.append(timer.sum())
        
        df['epoch'] = epochs_list  
        df['loss'] = loss_list
        df['train_acc'] = train_acc_list
        df['test_acc'] = test_acc_list
        df['time'] = time_list
        df.to_excel("savefile/DMNet_camvid.xlsx")
        #----------------保存模型-------------------
        if np.mod(epoch+1, 5) == 0:
            torch.save(model.state_dict(), f'checkpoints/DMNet_{epoch+1}.pth')
train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num,scheduler)

训练结果

 

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yumaomi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值