1025. 除数博弈

1025. 除数博弈

爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:

  • 选出任一 x x x,满足 0 < x < N 0 < x < N 0<x<N 且 N%x==0。
  • N − x N - x Nx 替换黑板上的数字 N N N

如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 False。假设两个玩家都以最佳状态参与游戏。

示例 1:

输入:2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。

示例 2:

输入:3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

提示:

  • 1 <= N <= 1000

一、找规律
用归纳法可以证明,奇数先手必败,偶数先手必胜

class Solution:
    def divisorGame(self, N: int) -> bool:
        return (N%2 == 0)
        #二进制按位取与得偶数
        #rerturn (N&1 == 0)

二、动态规划
状态转移方程:d[i] = (i % x == 0 && !dp[i - x])


class Solution:
    def divisorGame(self, N: int) -> bool:
        if N==1:
            return False
        if N == 2:
            return True
        dp=[False]*(N+1)
        dp[1] = False
        dp[2] = True
        for i in range(3,N+1):
            for j in range(1,i//2):
                if i%j == 0 and dp[i-j] == False:
                        dp[i] =True
                        break
        print(dp)
        return dp[-1]
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页