计算机视觉日记

极化散射矩阵图像分类

PolSAR Image Classification based on Polarimetric Scattering Coding and Sparse Support Matrix Machine
摘要:POLSAR图像优于光学图像,因为它可以独立于云层和太阳能照明而获得。 PolSAR图像分类是解释POLSAR图像的热门话题。本文提出了一种基于极化散射编码和稀疏支持矩阵机的POLSAR图像分类方法。首先,我们通过极化散射编码转换原始POLSAR数据以获得实数值矩阵,其被称为极化散射矩阵并且是稀疏矩阵。其次,稀疏支持矩阵机用于对稀疏极化散射矩阵进行分类,得到分类图。这两个步骤的结合充分考虑了POLSAR的特点。实验结果表明,该方法可以取得较好的效果,是一种有效的分类方法。
论文地址:https://arxiv.org/pdf/1906.07176.pdf

不均衡样本训练

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
摘要:当训练数据集遭受严重的类不平衡时,深度学习算法可能会很差,但测试标准要求对频率较低的类进行良好的推广。我们设计了两种新方法来改善这种情况下的性能。首先,我们提出了一个理论上有原则的标签分布感知边际LDAM损失,其动机是通过最小化基于边缘的泛化界限。这种损失取代了训练期间的标准交叉熵目标,并且可以应用于先前的类别不平衡训练策略,例如重新加权或重新采样。其次,我们提出了一个简单但有效的培训计划,该计划将重新加权推迟到初始阶段之后,允许模型学习初始表示,同时避免与重新加权或重新采样相关的一些复杂性。我们在几个基准视觉任务上测试我们的方法,包括真实世界不平衡数据集iNaturalist 2018.我们的实验表明,这些方法中的任何一个都可以比现有技术有所改进,并且它们的组合可以实现更好的性能提升。
论文地址:https://arxiv.org/pdf/1906.07413

云图像目标检测
A Conditional Random Field Model for Context Aware Cloud Detection in Sky Images
Authors Vijai T. Jayadevan, Jeffrey J. Rodriguez, Alexander D. Cronin
提出了一种基于地面天空图像云检测的条件随机场CRF模型。我们表明,通过在CRF框架中组合判别分类器和更高阶的集团潜力,可以实现非常高的云检测精度。首先使用均值偏移聚类算法将图像分成均匀区域,然后在这些区域上定义CRF模型。使用训练数据估计所涉及的各种参数,并且使用迭代条件模式ICM算法来执行推断。我们演示如何考虑空间背景可以提高准确性。我们提供定性和定量结果,以证明该框架的优越性能与其他应用于云检测的最先进方法相比较。
论文地址:https://arxiv.org/pdf/1906.07383

4D心脏图分析
4D CNN for semantic segmentation of cardiac volumetric sequences
Authors Andriy Myronenko, Dong Yang, Varun Buch, Daguang Xu, Alvin Ihsani, Sean Doyle, Mark Michalski, Neil Tenenholtz, Holger Roth
摘要:我们提出了一种4D卷积神经网络CNN,用于分析回顾性心电门控心脏CT,随时间推移的一系列单通道体积数据。虽然时间序列中只有一小部分卷被注释,但我们在可用标签上定义了稀疏损失函数,以允许网络在训练期间利用未标记的图像并生成完全分段的序列。我们研究了所提出的4D网络的准确性,以预测时间上一致的分割,并与传统的3D分割方法进行比较。我们证明了4D CNN的可行性,并确定了其在心脏4D CCTA上的表现。
论文地址:https://arxiv.org/pdf/1906.07295.pdf

水下图像增强
基于对抗网络的水下图像增强算法, 首先提出了U45水下数据集,同时设计了针对图像和特征的融合特征的损失函数。实现的模型参数较少,速度较快效果较好。(from 南京信息工程大学)
论文地址:https://arxiv.org/pdf/1906.06819.pdf
数据地址:u45 dataset:https://github.com/IPNUISTlegal/underwater-test-dataset-U45-rar:
https://github.com/IPNUISTlegal/underwater-test-dataset-U45-/blob/master/U45.rar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值