一文搞懂积分不等式证明(积分证明题总结笔记3/3)

积分证明题是考研中难度较大的板块,很多学弟学妹们希望我出一篇总结文章,故作本文,希望对大家有所帮助。

本文所涉及题目,均是来自市面上常见题册(李林880,张宇1000题,汤家凤1800等)

由于内容较多,故分为三部分:

等式证明(点击进入)
由积分判断函数零点个数(点击进入)
不等式证明(本文内容)

积分不等式证明:

从市面上常见题册中总结了证明积分不等式的七种常见的方法。汇总如下:
积分不等式证明方法汇总
下面主要围绕这七种方法进行最全面的讲解,让同学们全方位搞懂这几个方法。

1.构造函数用单调性做

使用场景:
题目中有单调字眼,或者有 f ′ ( x ) > 0 f'(x) >0 f(x)0(或 < 0 <0 0)时考虑使用

解题步骤:
a.将所证不等式进行移项,并设其中一个字母为 x ,进而构造函数。(注意 x 的范围)
b.将构造的函数进行求导,得到其单调性。(其中有可能会用到中值定理)
c.求解出 x 处于某一范围时,函数的最值,最后变形即证明完成。

例题讲解:
以下面例题为例详细讲解该方法:
构造函数证明积分不等式
设函数时一定要注意函数的定义域。这两道题都是设b为x(当然,如果你想设a为x也是可以的),所以由 b ≥ a b\geq a ba x ≥ a x\geq a xa

2.构造二重积分

使用场景:
证明式子中有两函数相乘的积分,且这两个函数在积分区域都是单调时,考虑用该方法。

解题步骤:
设所证明的不等式中含有 ∫ a b f ( x ) g ( x ) d x \int_{a}^{b} f(x)g(x)dx abf(x)g(x)dx
a.构造式子: [ f ( x ) − f ( y ) ] [ g ( x ) − g ( y ) ] [f(x)-f(y)][g(x)-g(y)] [f(x)f(y)][g(x)g(y)] (利用单调性判断这个式子和0之间的大小关系)
b.积分:在区域 D = { ( x , y ) ∣ a ≤ x ≤ b , a ≤ y ≤ b } D=\left\{ (x,y)|a\leq x\leq b, a\leq y \leq b\right\} D={ (x,y)axb,ayb} 上积分
c.化简得证

例题讲解:
用下面例题详细讲解该方法:
构造二重积分证明积分不等式

3.利用图像解决

使用场景:
题目条件中有 f ( x ) , f ′ ′ ( x ) f(x),f''(x) f(x),f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值