懂不懂拉式中值,在解极限的时候,是两重境界。用一个例题来体会,自行感受。
题目:
lim
x
→
0
c
o
s
(
s
i
n
x
)
−
c
o
s
x
x
4
\lim_{x \rightarrow 0}{\frac{cos(sinx)-cosx}{x^{4}}}
limx→0x4cos(sinx)−cosx
当你不会拉式中值的时候,你的解答如下:
可见不用拉式中值的解答,又臭又长!
但是当你会拉式中值时,你的解答是这样:
运用拉式中值解决极限
三步解决问题它不香么?别人还在写的时候,我的结果都已经口算出来了!
那么这种化劲是怎么练出来的?学长就带你研究!!!
对于数学中的性质和公式,一般我们从三个方面去思考:
1.这个公式是什么(本质);
2.这个公式什么时候用;
3.这个公式怎么用。
1.这个公式是什么
首先回归定理:
f
(
x
1
)
−
f
(
x
2
)
=
f
′
(
ξ
)
(
x
1
−
x
2
)
f(x_{1})-f(x_{2})=f'(\xi)(x_{1}-x_{2})
f(x1)−f(x2)=f′(ξ)(x1−x2),其中
ξ
\xi
ξ介于
x
1
x_{1}
x1与
x
2
x_{2}
x2之间
上式
x
1
、
x
2
x_{1}、x_{2}
x1、x2 是个数,如果推广为函数呢?
f
[
g
(
x
)
]
−
f
[
h
(
x
)
]
=
f
′
(
ξ
)
[
g
(
x
)
−
h
(
x
)
]
f[g(x)]-f[h(x)]=f'(\xi)[g(x)-h(x)]
f[g(x)]−f[h(x)]=f′(ξ)[g(x)−h(x)],其中
ξ
\xi
ξ介于
g
(
x
)
g(x)
g(x)与
h
(
x
)
h(x)
h(x)之间
这就是上面应用拉氏中值求极限的核心:两个复合函数作差变成了内层函数作差,这就相当于将原来的两个复合函数的皮(外层函数f相当于皮)给剥掉了。这样的话,就能起到化繁为简的目的,这就是拉氏中值。
2.什么情况下用?
公式中有两处细节:a.复合函数作差;b.外层函数一致。所以,满足这两个条件,就可以马上掏出拉氏中值试一试。
3.怎么用?
数学做题的过程就是化繁为简,变未知到已知的过程。我们还是从第一点拉氏中值的本质入手,观察下这个式子:
我们最终是通过拉氏中值转化到右边的式子,如果右边的式子可以求出来,那么我们的工作就完成了,拉氏中值也完成了它得使命。但是可不可以求出来呢?我们观察一下:右边式子中
f
′
(
x
)
,
g
(
x
)
,
h
(
x
)
f'(x),g(x),h(x)
f′(x),g(x),h(x) 都是可以找出来或者求出来,而参数
ξ
\xi
ξ却让人为难,我们只知道参数
ξ
\xi
ξ的一个范围,但是具体是多少不一定清楚。所以这里就是一个关键问题,也是衡量拉氏中值能不能顺利做下去的命门:参数搞不搞的定!
那么参数如何搞定呢?一般有两个思路:a.夹逼定理;b.等价于某个关于x的式子。
a.夹逼定理:
我们知道了参数 ξ \xi ξ的一个范围,它是在 g ( x ) g(x) g(x) 和 h ( x ) h(x) h(x) 之间,假设 g ( x ) ≥ h ( x ) g(x)\geq h(x) g(x)≥h(x) ,那么就有 h ( x ) ≤ ξ ≤ g ( x ) h(x)\leq \xi\leq g(x) h(x)≤ξ≤g(x) ,是不是有点夹逼定理的味道了?如果取极限后 g ( x ) g(x) g(x) 和 h ( x ) h(x) h(x)相等,那么参数 ξ \xi ξ就可以夹出来了。
话不多说,直接上题,彻底搞定这个思路:
本题中
g
(
x
)
g(x)
g(x)和
h
(
x
)
h(x)
h(x)都趋近于1,因此通过夹逼定理得到参数
ξ
\xi
ξ也趋近于1,然后直接带进
f
′
(
x
)
f'(x)
f′(x)中(代入后不为∞也不为0),就可以正常解出这个极限。
所以有本方法的适用范围:
g
(
x
)
g(x)
g(x)和
h
(
x
)
h(x)
h(x)都趋近于
x
0
x_{0}
x0 ,同时
lim
x
→
x
0
f
′
(
x
)
\lim_{x \rightarrow x_{0}}f'(x)
limx→x0f′(x)存在且不为0。
不适用范围:如果
g
(
x
)
g(x)
g(x)和
h
(
x
)
h(x)
h(x)都趋近于0(或∞),且
lim
x
→
0
(
或
∞
)
f
′
(
x
)
\lim_{x \rightarrow 0(或∞)}{f'(x)}
limx→0(或∞)f′(x) 为
∞
∞
∞或者
0
0
0,这时候夹逼定理得参数
ξ
\xi
ξ的值就不再适用了,尝试使用方法b搞。
b.等价于某个关于x的式子:
适用于:当内层函数趋近于0,同时
x
→
0
,
f
′
(
x
)
~
m
x
k
x \rightarrow 0,f'(x)~mx^{k}
x→0,f′(x)~mxk (其中
m
,
k
m,k
m,k为非0常数)
或者当内层函数趋近于∞,同时
x
→
∞
,
f
′
(
x
)
~
m
x
k
x \rightarrow ∞,f'(x)~mx^{k}
x→∞,f′(x)~mxk (其中m,k为非0常数)
上述条件看似很严格,但是所幸在考研极限题目中,基本上都是满足的,本文所选取的极限也是满足的。所以其作为一个隐含条件在过程中就没有体现。严谨的小伙伴可以在用该方法求极限之前稍微判定一下。
该方法如何做?
如果
h
(
x
)
h(x)
h(x) 和
g
(
x
)
g(x)
g(x) 的极限趋近于无穷或者趋近于0,则需要判断一下
lim
x
→
x
0
h
(
x
)
g
(
x
)
\lim_{x \rightarrow x_{0}}{\frac{h(x)}{g(x)}}
limx→x0g(x)h(x) 是否为1?如果是1。就可以将参数
ξ
\xi
ξ等价于一个函数,再带入求极限。而这个函数处于
h
(
x
)
h(x)
h(x) 和
g
(
x
)
g(x)
g(x)之间就可以。抽象?直接上题。
一道简单的拉式中值,判定结果为1之后运用等价求参数
这道题看见两个内层函数趋近于无穷,所以我们判定
lim
x
→
x
0
h
(
x
)
g
(
x
)
=
1
\lim_{x \rightarrow x_{0}}{\frac{h(x)}{g(x)}}=1
limx→x0g(x)h(x)=1 后,就可以把参数等价为
x
2
x^{2}
x2 ,进而得出结果。(本文开头的题目也是这样的思路)。也许你疑惑:为什么这样判定?判定后为啥可以这样设?
数学证明来解释这一点:
1.首先证明参数 ξ 和 h ( x ) 与 g ( x ) \xi 和 h(x) 与 g(x) ξ和h(x)与g(x) 之间的函数等价:
2.再证明 f ′ ( ξ ) f'(\xi) f′(ξ) 与 f ′ ( y ( x ) ) f'(y(x)) f′(y(x)) 等价(其中 y ( x ) y(x) y(x) 为 h ( x ) h(x) h(x) 与 g ( x ) g(x) g(x) 之间的函数):
注:若此时
h
(
x
)
h(x)
h(x)和
g
(
x
)
g(x)
g(x)趋近于∞,证法相似。
如果找不到介于
h
(
x
)
h(x)
h(x) 和
g
(
x
)
g(x)
g(x) 之间的函数,可以直接令
f
′
(
ξ
)
f'(\xi)
f′(ξ)等价于
f
′
(
g
(
x
)
)
f'(g(x))
f′(g(x)) 或
f
′
(
h
(
x
)
)
f'(h(x))
f′(h(x)) 。
于是就有了如下精简拉氏中值秒杀结论:
补充两点:
1.对于数列极限,也可以运用拉氏中值求解,只不过需要在运用之前将数列转变为函数,即
n
→
x
n\rightarrow x
n→x ,即可。
2.方法b及相应的结论在计算小题时,可以快速得到答案;对于大题而言,可以用这个方法及结论快速判断能否用拉氏中值,同时可以利用这个方法快速验算自己的结果。如果想要在大题中使用方法b,则具体步骤要写的详细一点(利用夹逼定理),如下例题。
总结一下:
1.看见复合函数相减(有些相加可以通过变形变成相减)就要考虑到拉式中值。
2.并不是所有复合函数相减都能用拉式中值,主要看参数能不能求出来。
3.求出参数的方法有两种,一个是夹逼定理;一个就是将参数等价为关于x的式子。
趁热打铁:
1.
lim
x
→
∞
x
2
(
a
r
c
t
a
n
a
x
−
a
r
c
t
a
n
a
x
+
1
)
\lim_{x \rightarrow \infty}{x^{2}(arctan\frac{a}{x}-arctan\frac{a}{x+1})}
limx→∞x2(arctanxa−arctanx+1a) 其中a大于0
2.
lim
x
→
2
5
x
−
1
−
2
x
+
5
x
2
−
4
\lim_{x \rightarrow 2}{\frac{\sqrt{5x-1}-\sqrt{2x+5}}{x^{2}-4}}
limx→2x2−45x−1−2x+5
3.
lim
x
→
0
l
n
(
1
+
x
2
)
−
l
n
(
1
+
s
i
n
2
x
)
x
4
\lim_{x \rightarrow 0}\frac{ln(1+x^{2})-ln(1+sin^{2}x)}{x^{4}}
limx→0x4ln(1+x2)−ln(1+sin2x)
到此结束~
我是煜神学长,考研我们一起加油!!!
关注TB店铺:KY煜神思维导图,了解考研数学提分利器思维导图