多元函数微分学条件极值(拉格朗日乘数法)求解技巧总结

看到多元函数条件极值的题目,常用拉格朗日乘数法对号入座。但有时候如坐针毡,因为这种看似万能的方法计算量太大了。解方程解的生无可恋是常态。所以我总结了一些解条件极值的小技巧,希望对大家有所帮助。

总的来说,思路分为五种:

1.从前几个式子中找出 x,y,z 之间的关系,然后带入到 φ ( x , y , z ) = 0 \varphi (x,y,z)=0 φ(x,y,z)=0 中解出来;
2.先求出 λ \lambda λ 的值,化简式子。
3.目标函数的极值可以用 λ \lambda λ 表示,然后只用求 λ \lambda λ 即可;
4.转换目标函数,使拉氏函数变的简单。
5.降维转变为一元函数求极值。
以下八种技巧都是围绕上面五点进行展开的。
(文末彩蛋:利用不等式解最值)

技巧一:硬核作差法

先用二元函数举例来说明此技巧:

技巧简介:

在这里插入图片描述
这个方法可以去除 λ \lambda λ,进而转变为不含 λ \lambda λ的式子,再与 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 配合(两个方程,两个未知数),从而解出 x , y x,y x,y。例题如下所示:

例题一:

题型一

通过该方法,可以轻松得到 x , y x,y x,y 之间的关系,此时再带入到 x 2 y 2 − x 4 − y 2 = 0 x^{2}y^{2}-x^{4}-y^{2}=0 x2y2x4y2=0 中,即可解出对应的 x , y x,y x,y
对于三元函数类似,只不过这时候要作差两次,如下例题:

例题二:

在这里插入图片描述
此时作差了两次,这里需要注意作差的式子要灵活选择,选取不当会导致计算量增大。
比如本题如果选择 : L x ′ φ y ′ − L y ′ φ x ′ : L_{x}^{'}\varphi_{y}^{'}-L_{y}^{'}\varphi_{x}^{'} LxφyLyφx L y ′ φ z ′ − L z ′ φ y ′ L_{y}^{'}\varphi_{z}^{'}-L_{z}^{'}\varphi_{y}^{'} LyφzLzφy 则不容易解出来。
另外需要注意这种解法不会漏解,但是有可能会增解。例如本题 x = ± 10 , y = z = 0 x=\pm\sqrt{10},y=z=0 x=±10 y=z=0 就是多出来的解。

技巧二:单项连等法

目标函数是 f ( x , y , z ) = m x a y b z c f(x,y,z)=mx^{a}y^{b}z^{c} f(x,y,z)=mxaybzc 时( m , a , b , c 均不为

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值