图像匹配精度评价

高光谱图像处理 专栏收录该内容
2 篇文章 1 订阅


最近在做图像匹配的相关内容,把图像匹配精度的评价指标记录一下。
刚刚入门匹配,如果有错误的地方欢迎大佬们指正。

相关参数

图像:A,B,大小512×512,单应性矩阵H,投影后,像素误差阈值为thres。

特征点及描述子提取算法:SIFT

匹配策略:Flann

提取到的特征点数量:

图像A提取到的特征点数量:FeaturesA = 2000
图像B提取到的特征点数量:FeaturesB = 1000
那么A和B匹配点的数量最大就是1000
投影后误差小于阈值的点:Correspondence(B-HA < thres) = 800

利用Flann匹配,距离参数设置为0.8。

匹配点的数量:Flann0.8 = 500
正确匹配的数量:Correct0.8 = 300

利用Flann匹配,距离参数设置为0.7。

匹配点的数量:Flann0.7 = 400
正确匹配的数量:Correct0.7 = 250

假定匹配率(putative match ratio)

假定匹配率(putative matches ratio) = 假定匹配(putative matches)/ 特征点数量(features)
根据上面的匹配参数。假定匹配率 = 匹配点的数量 / 两图像提取到的特征点数量的均值
Flann0.8下的假定匹配率:PMR0.8 = Flann0.8 /1000 = 500/1000 = 0.5
Flann0.7下的假定匹配率:PMR0.7 = Flann0.7 / 1000 = 400/1000 = 0.4

匹配精度(precision)

匹配精度(precision)= 正确匹配(correct matches)/ 假定匹配(putative matches)
Flann0.8下的精度:PRE0.8 = Correct0.8 / Flann0.8 = 300/ 500 = 0.6
Flann0.7下的精度:PRE0.7 = Correct0.7 / Flann0.7 = 250/400 = 5/8

匹配分数(matches score)

匹配分数(matches score) = 正确匹配(correct matches)/ 特征点数量(features)
Flann0.8下的匹配分数 :Correct0.8 /1000 = 300 / 1000 = 0.3
Flann0.7下的匹配分数 :Correct0.7 / 1000 = 250/ 1000 = 0.25

召回率(recall)

召回率(recall) = 正确匹配(correct matches)/ correspondence
Flann0.8下的召回率 :Recall0.8 = Correct0.8 /800= 300 / 800 = 3/8
Flann0.8下的召回率 :Recall0.7 = Correct0.7 /800= 250/ 800 = 5/16
这些只是个人理解,有错误的地方欢迎大家指正。

参考文献

A Performance Evaluation of Local Descriptors
A_Comparison_of_Affine_Region_Detectors
Comparative Evaluation of Binary Features

  • 0
    点赞
  • 5
    评论
  • 10
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值