本博客是学习的Elastx官方文档的摘抄,感兴趣可前往https://elastix.lumc.nl/index.php查看
或者下载Elastix文档查看https://download.csdn.net/download/Joker00007/13757991
1.MSE(均方差)
2.NCC(归一化相关系数)
3.MI(互信息)
4.NMI(标准化互信息)
5.KS(卡帕统计)
6.目标配准误差(TRE)
医学图像中术语目标(target) 用于表示与配准直接相关的配准点,在医学应用中,它们通常是位于手术期间要切除的病变内或边界上的点,或是出于诊断目的而要检查的功能活动区域。目标误差即表示同一个标定点在两幅图像中的差异。
FLE: 即定位基准点的误差
FRE: 配准后相应基准点之间的均方根距离
TRE: 配准后基准点以外的相应点之间的距离
在计算TRE时,“目标”可以是预定义的位置(基准点或landmark),表面点或感兴趣区域内的任意选择点。在计算3-D图像TRE时,通常建议计算他们的平均值。对于规则网格(均匀分布)上固定的3-D点,需要用金标准的点和配准后转换过的点计算他们的距离。
随着技术的发展,TRE的计算方式也有许多改进。简单来说,就是计算原先的点和配准后的点的欧氏距离,再计算其均值和方差。
总结
MSD度量是一种仅适用于具有相等强度分布的两个图像的度量,即来自相同模态的图像。
NCC相对宽松,它假设固定图像和运动图像的强度值之间存在线性关系,因此可以更频繁地使用。
MI度量更加普遍:仅假设固定图像和运动图像的强度的概率分布之间的关系。众所周知,对于多模态图像,它不仅适用于单模态图像,也适用于多模态图像对,这种方法通常是图像配准的好选择。
NMI度量就像MI一样,适用于单模态和多模态配准。
KS测量特别意味着记录二进制图像(分割)。它测量分段的“重叠”。