图像配准常用评价方法

本博客是学习的Elastx官方文档的摘抄,感兴趣可前往https://elastix.lumc.nl/index.php查看
或者下载Elastix文档查看https://download.csdn.net/download/Joker00007/13757991

1.MSE(均方差)

在这里插入图片描述

2.NCC(归一化相关系数)

在这里插入图片描述

3.MI(互信息)

在这里插入图片描述

4.NMI(标准化互信息)

在这里插入图片描述

5.KS(卡帕统计)

在这里插入图片描述

6.目标配准误差(TRE)

医学图像中术语目标(target) 用于表示与配准直接相关的配准点,在医学应用中,它们通常是位于手术期间要切除的病变内或边界上的点,或是出于诊断目的而要检查的功能活动区域。目标误差即表示同一个标定点在两幅图像中的差异。

FLE: 即定位基准点的误差
FRE: 配准后相应基准点之间的均方根距离
TRE: 配准后基准点以外的相应点之间的距离

在计算TRE时,“目标”可以是预定义的位置(基准点或landmark),表面点或感兴趣区域内的任意选择点。在计算3-D图像TRE时,通常建议计算他们的平均值。对于规则网格(均匀分布)上固定的3-D点,需要用金标准的点和配准后转换过的点计算他们的距离。
随着技术的发展,TRE的计算方式也有许多改进。简单来说,就是计算原先的点和配准后的点的欧氏距离,再计算其均值和方差。
在这里插入图片描述在这里插入图片描述

总结

MSD度量是一种仅适用于具有相等强度分布的两个图像的度量,即来自相同模态的图像。
NCC相对宽松,它假设固定图像和运动图像的强度值之间存在线性关系,因此可以更频繁地使用。
MI度量更加普遍:仅假设固定图像和运动图像的强度的概率分布之间的关系。众所周知,对于多模态图像,它不仅适用于单模态图像,也适用于多模态图像对,这种方法通常是图像配准的好选择。
NMI度量就像MI一样,适用于单模态和多模态配准。
KS测量特别意味着记录二进制图像(分割)。它测量分段的“重叠”。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值