概率的性质——连续性

概率的连续性如下定义:
我们可以用韦恩图把他们表示出来,便于理解:
图1   对应性质(1)
图2   对应性质(2)

从图1中我们可以看出,集合单调不增,打个比方,此集合会越来越小,那么称集合上连续(从上方逼近),极限为集合的交集。简单的说,其实就是求多个事件都同时发生的概率为多少。
图2集合单调不减,此集合存在极限,并为集合的并集,满足下连续(从下方逼近)即下极限。也就是求各个事件只要有一个发生的概率为多少。
感觉我这里给出的极限不完全正确,可以试着帮助理解。。。

下面给出规范的集合极限的定义:
可以去看看https://www.zhihu.com/question/29727996知乎上对集合极限的一种回答。


没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭