[集创赛海云捷讯杯]全国二等奖经验分享

本文分享了一篇关于集创赛海云捷讯杯全国二等奖的经验,详述了基于FPGA的机器视觉技术在缺陷检测中的应用,包括使用海云自研CNN加速器优化深度学习模型,如MobileNet_SSD,进行图像处理和小目标识别。通过时序优化、量化裁剪和多线程调度,实现了推理刷新时间和HDMI帧率的提升,成功检测了缺陷样本,达到了比赛要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[集创赛海云捷讯杯]全国二等奖经验分享

一.前言

笔者是研一在校生,从五月份开始和本科生一起卷集创赛,经历初赛,分赛区决赛,全国总决赛,认识了很多一起做比赛的朋友收获颇丰。今年海云杯初赛报名队伍340支左右,晋级分赛区决赛的队伍130支,晋级全国总决赛22支加上各赛区优秀组织队伍报送一共晋级全国总决赛26支队伍。在淘汰率方面可以说是各杯赛最卷的几个杯赛之一了。其中我在的东北赛区分赛区八组晋级一组总决赛,除了西南赛区各个赛区也基本上都是这个比例。
为了记录一下集创赛的过程,也为下一届报名海云杯的同学们提供些借鉴,计划未来一两个月推出海云捷讯集创赛经验贴分享专栏。在专栏中会尽可能的详细介绍在做海云杯的过程中遇到的困难,和解决思路。

二.我们的作品

目前,基于FPGA的机器视觉技术在缺陷检测领域发展迅速,深度学习技术凭借其不需要人工、依靠卷积神经网络的特征表征能力自动提取特征的优点被广泛应用于缺陷检测领域。本设计基于海云自研CNN加速器,对AI框架进行深度优化,更高效的利用CNN加速器,从而实现机器视觉缺陷检测。
在这里插入图片描述
本文首先阐述了DVP、VGA时序、模型缩放、QAT量化、MobileNet_SSD算法等的原理,对Paddle-lite推理框架、工业缺陷检测存在的问题以及小目标识别的解决策略进行了详细阐述。训练一个全精度mobilenet_v1_ssd模型作为基准模型。针对样本中针孔识别置信度较低的问题,将算法默认的先验框大小进行了调整,提高了针孔样本推理置信度。对SDK各部分进行耗时分析,使用neon指令集优化输入输出重排,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雪中奇侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值