决策树(上):要不要去打篮球?决策树来告诉你

本文介绍了决策树的工作原理,包括构造和剪枝。在构造决策树时,通过信息熵和信息增益来选择最佳属性,如以天气、温度等作为判断打篮球的依据。C4.5算法对ID3进行了改进,采用信息增益率和悲观剪枝,增强了决策树的泛化能力。文章还探讨了如何处理连续属性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树(上):要不要去打篮球?决策树来告诉你

生活中,会遇到各种选择,都是基于以往的经验来做判断的,如果把判断背后的逻辑整理成一张结构图,发现是一个树状图,即决策树

决策树的工作原理

把我们以前的经验总结出来,如果准备了一个打篮球的训练集,如果要出门打篮球,会根据“天气”“湿度”“温度”“刮风”几个条件来判断,最后得到结果“去打篮球?还是不去”

天气-> 温度? -> 打篮球?不打篮球?

​ -> 湿度? -> 打篮球?不打篮球?

​ -> 刮风? -> 打篮球?不打篮球?

我们在做决策树的时候会经历两个阶段:构造和剪枝

构造

生成一个完整的决策树,构造的过程就是选择什么属性作为节点的过程,在构造的过程中,会存在三种节点:

  • 根节点:就是树的最顶端,最开始的那个节点,天气就是一个根节点
  • 内部节点:就是树中间的那些节点,比如温度,湿度 刮风
  • 叶节点:树最底部的节点,就是决策结果

节点之间有父子关系,比如根节点会有子节点,子节点会有子子节点,但到了叶节点就停止了,叶节点不存在子节点,在构造过程中,解决三个问题:

  • 选择哪个属性作为跟节点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值