这个算法一直不太会,再加上现在最近考试和项目比较多,所以就耽搁下来了,现在来梳理一下
1.找出最优解性质,并刻化其结构特征(最优子结构)
2.递归定义最优值
3.以自底向上方式计算最优值
4.根据计算最优值时信息,构造最优解
看看这个就入门了
输入格式:
5 //表示三角形的行数 接下来输入三角形
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
要求输出最大和
接下来,我们来分析一下解题思路:
首先,肯定得用二维数组来存放数字三角形
然后我们用D( r, j) 来表示第r行第 j 个数字(r,j从1开始算)
我们用MaxSum(r, j)表示从D(r,j)到底边的各条路径中,最佳路径的数字之和。
因此,此题的最终问题就变成了求 MaxSum(1,1)
当我们看到这个题目的时候,首先想到的就是可以用简单的递归来解题:
D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形,我们可以写出如下的递归式:
if ( r == N)
MaxSum(r,j) = D(r,j)
else
MaxSum( r, j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j)
float(“inf”)是正无穷
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
零钱兑换:
示例 1:
输入: coins = [1, 2, 5], amount = 11
输出: 3
解释: 11 = 5 + 5 + 1
示例 2:
输入: coins = [2], amount = 3
输出: -1
说明:
你可以认为每种硬币的数量是无限的。
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
coids = coins.sort()
dp=[0]
for i in range(1,amount+1):
dp.append(float('inf'))
for coin in coins:
if i>=coin:
if dp[i-coin]+1<dp[i]:
dp[i]=dp[i-coin]+1
else:
break
return dp[-1] if dp[-1]!=float('inf') else -1
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [float('inf')] * (amount + 1)
dp[0] = 0
for coin in coins:
for x in range(coin, amount + 1):
dp[x] = min(dp[x], dp[x - coin] + 1)
return dp[amount] if dp[amount] != float('inf') else -1
最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
#暴力动态规划
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums:
return 0
dp = []
for i in range(len(nums)):
dp.append(1)
for j in range(i):
if nums[i] > nums[j]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
#动态规划+二分
if not nums:
return 0
if len(nums)==1:
return 1
nums_list = [nums[0]]
for i in range(1,len(nums)):
if nums[i]>nums_list[-1]:
nums_list.append(nums[i])
else:
left,right = 0,len(nums_list)-1
while left<=right:
mid = (left+right)//2
if nums_list[mid]>=nums[i]:
right = mid-1
elif nums_list[mid]<nums[i]:
left = mid+1
nums_list[left]=nums[i]
return len(nums_list)