2022机器学习好网站大收藏

目前,
一般从事传统机器学习(决策树、逻辑回归、SVM等)的人,
不需要关注人工智能(深度学习、NLP等)方面的知识,


但五花八门的网站,往往无法聚焦到传统机器学习中。
笔者花了近十天时间,到各个网站上去玩了一遍,
精心筛选出传统机器学习的干货网站和资源,并分类整理如下。


目录

一、学习网站(专门只讲技术的干货网站)

二、社区

三、比赛网站

四、数据

五、论文与会议

六、关于搜索的技巧



一、学习网站(专门只讲技术的干货网站)


【AI算法工程师手册】:    https://www.huaxiaozhuan.com/    

《Python 大战机器学习》作者华校专的笔记,内容质量非常高,可贵的是仍不断更新。
里面包括数学基础、机器学习算法、深度学习、推荐系统等等等等算法内容,
丰富到作者介绍不过来,赶紧新自去看看吧。


【老饼讲解-系列】
《老饼讲解-机器学习》 https://www.bbbdata.com/ml
《老饼讲解-BP神经网络》 https://www.bbbdata.com/nn

老饼系列主要是入门教程和软件包的算法解读。

跟随老饼教程可以获得软件包的一手算法原理。
《机器学习》是逻辑回归、决策树、ADBOOST、GBDT等传统算法的源码解读、讲解和python实现。《BP神经网络》则是作者扒取matlab神经网络工具箱源码后整理出来的简易教程。传统机器学习可以不关注BP神经网络。


【白板推导系列】:https://www.bilibili.com/video/BV1aE411o7qd?p=1    

质量非常高的公式推导视频,踏实,干货,跟着视频走一遍,胜读十本书。
里面的推导非常细节、周到,这是很多教程没有涉及到的,属于想理论深造的首推之作。


【ApacheCN系列】    
《机器学习与数据挖掘译文集》:https://docs.apachecn.org/ml/#/        
《人工智能知识树》https://apachecn.org/#/docs/tree/README    
《XGBoost中文文档》 https://docs.apachecn.org/xgboost/#/docs/13 

这可是ApacheCN(布客iBooker)提供的豪华套餐
《文集》上翻译了很多机器学习的书,《知识树》则是根据知识点梳理出来的好文章,《XGBoost中文文档》专讲XGBOOTS,E文不好的看中文文档较舒服,


【机器学习(天赋好书)】: https://www.cntofu.com/type-7-1-1.html

上面有大量机器学习相关的电子书,
书目列表这里就不一一展示了,自己上去看一下就知道。


【机器学习公式详解】:https://linklearner.com/datawhale-homepage/#/learn/detail/10    

DataWhale对周志华的《机器学习》里比较难理解的公式加以补充、推导。
需要结合周志华的书籍去看哦。


二、社区



【和鲸社区】:https://www.heywhale.com    

一个丰富的社区,可以找到不少项目实例


【showmeAI】:https://www.showmeai.tech/    

人工智能领域的资料库和学习社区,覆盖Python、数据科学、机器学习、深度学习、自然语言处理、计算机视觉等方向。
非常精美,可以感受到站长是个有心人。

【apacheCn】:https://www.apachecn.org/

翻译各种外文书籍,与机器学习相关的目录主要有:数据科学、人工智能、datawhale等。
《ApacheCN 人工智能知识树》,《aiLearning》都是不错的学习材料模块。

【dataWhale】:http://www.datawhale.club/    

Datawhale发展于2018年12月6日。
团队成员规模在不断扩大,有来自双非院校的优秀同学,也有来自上交、武大、清华等名校的小伙伴,同时也有来自微软、字节、百度等企业的工程师。

【AI研习社】:https://www.yanxishe.com/    

提供研习、交流、实战、职业等模块。是论文研读和研究比赛实践的好去处。

三、比赛网站


比赛的网站还有很多,这里只列出比赛较多的平台

【Kaggle】    https: //www.kaggle.com/competitions
【coggle】: https://coggle.club/   
【华为云-AI大赛】:https://competition.huaweicloud.com/competitions?track=107    
【飞桨(百度)】:https://aistudio.baidu.com/aistudio/competition    
【阿里天池】:https://tianchi.aliyun.com/competition/gameList/algorithmList    
【迅飞-AI比赛】:https://challenge.xfyun.cn/    
【和鲸数据科学竞赛】:https://www.heywhale.com/home/competition    
【DF赛事】:https://www.datafountain.cn/competitions    
【DataCastle】:https://challenge.datacastle.cn/v3/cmptlist.html    
【全国人工智能大赛】:https://naic.pcl.ac.cn/    

其中,Kaggle是国外人尽皆知的比赛网站,其它都是国内的比赛平台。

而值得注意的是,coggle上整合了国内外各个比赛平台的比赛项目信息,可以直接上coggle就可以找到大部分平台的信息。


四、数据


【UCI】:http://archive.ics.uci.edu/ml/index.php     

加州大学欧文分校机器学习仓库,上面收集与维护了大量机器学习的数据集

【美国政府开放数据】:https://data.gov/    

美国政府的开放数据,但并不是指政府相关的信息数据,上面的数据非常丰富

【VisualData】:https://visualdata.io/discovery    

视觉数据,上面可以下载到很多计算机视觉学习的数据(图片数据集)

【Amazon数据集】:https://registry.opendata.aws/    

亚马逊的开放数据,貌似不能直接下载,需要通过aws服务,反正我没下成功

补充:上面提到的每个比赛平台,都有“数据集”这一板块,都是找数据的好去处,这里不再重复哦。


五、论文与会议


由于机器学习的知识已经很固化了,一般不需要使用到,但可以先mark一下

【PapersWithCode】:https://paperswithcode.com/    

总结与收集了机器学习论文及其实现代码


【catalyzex】:https://www.catalyzex.com/    

按主题收集了各类型论文及代码,如目标检测,推荐系统,图像转换等


【arXiv】:http://arxitics.com/    
arXiv是一个涉及物理、数学、非线性科学、计算机科学等领域的世界上最大的预印本网站。
预印本的意思就是在正式发表前,可以发到arXiv上,在网上先占个坑,表明这思想是我提的。


下面是关键会议的论文:

【dblp】:https://dblp.uni-trier.de/db/    

提供有关主要计算机科学期刊和会议录的开放书目信息


【dblp-ICCV】:https://dblp.uni-trier.de/db/conf/iccv/index.html  

 dblp的ICCV库(国际计算机视觉大会)


【dblp-CVPR】:http://www.informatik.uni-trier.de/~ley/db/conf/cvpr/index.html  

 dblp的CVPR库(IEEE国际计算机视觉与模式识别会议)


【dblp-ECCV】:http://www.informatik.uni-trier.de/~ley/db/conf/eccv/index.html    

dblp的ECCV库(欧洲计算机视觉国际会议)


【CVpapers】:http://www.cvpapers.com/    

计算机视觉会议论文下载


六、关于搜索的技巧


很多同学,搜索内容的时候总是百度一下,然后出来很多CSDN的文章。
CSDN的文章有时质量偏下,深度不够。
这里分享一下笔者的搜索经验。

【百度开发者】:https://kaifa.baidu.com/    
【稀土掘金】:https://juejin.cn/
【博客园】:https://www.cnblogs.com/
【CSDN】:https://blog.csdn.net/
【火龙果】:http://request.uml.com.cn/
【知乎】:https://www.zhihu.com/
【B站】:https://www.bilibili.com/    


上面都是搜机器学习资源的好去处,但是是有区别的,
《百度开发者》是百度面向开发者的专用搜索引擎,可以搜出各种综合文章,比直接用百度的准确性会更加好。
《掘金》和《博客园》里搜索的文章则较为精品,文章多,质量好,视觉体验好。
《CSDN》的特点则是文章特别多,总能挑些好的,但也由于文章多,很多时候被水文盖掉了,要花些筛选成本。
《火龙果》收集了各平台筛选出来的一些高质量文章。在火龙果上搜索,可以省掉一些筛选水货的成本。
《知乎》则是话题性的,更多时候是想看下别人不同的看法,可以上知乎,相当于知识点的拓展和补充。
《B站》则以视频为主
 


 

### 和鲸社区与计算机设计资源 和鲸社区是一个专注于数据科学竞赛、学习交流和技术分享的综合性平台,其核心目标是推动数据分析技术的发展,并为用户提供丰富的实践机会。以下是关于和鲸社区及其在计算机设计领域所提供的资源的具体介绍: #### 1. 数据分析竞赛支持 和鲸社区提供了完整的竞赛支持体系,特别是针对像“数据解读乡村发展”这样的赛题,参赛者可以在和鲸平台上完成从报名到提交作品的所有流程[^1]。具体来说: - **报名与数据获取**:选手可以通过和鲸社区赛事页面进行报名,在加入比赛组织后即可获得赛的基础数据集。 - **开发环境**:和鲸旗下的数据科学协同工具 ModelWhale 提供了一个集成化的开发环境,允许用户在线完成数据探索、代码编写等工作,无需依赖本地计算资源。 - **成果提交**:最终的作品需以和鲸平台上的项目链接形式呈现,这不仅便于评审委员会验证项目的可复现性,也确保了所有提交材料的一致性和标准化。 #### 2. 历年获奖作品展示 为了帮助更多学生了解优秀的解决方案模式,和鲸社区整理并展示了过去几年中国学生计算机设计赛的部分获奖作品集合[^2]。这些案例覆盖多个方向,包括但不限于数据应用、人工智能算法实现等领域。访问方法如下: - 登录至和鲸官方网站; - 导航至顶部导航栏下的“频道”选项卡; - 进入专门设立的“优秀参赛作品专区”。 #### 3. 技术前沿动态跟踪 除了实际操作层面的支持外,和鲸还致力于传播最新的科研进展信息。例如,《BrainPy:迈向数字化脑的计算基础设施》这篇由北京学心理与认知科学学院博士后王超名发表的文章探讨了如何利用先进的数学建模技术和高性能模拟手段来研究复杂的脑结构及行为机制[^3]。这类内容对于希望深入理解现代信息技术发展趋势的学生具有重要价值。 #### 4. 社区互动促进创新思维碰撞 值得注意的是,借助类似于快鲸智慧社区系统这样的智能化管理系统还能进一步加强物业管理方同住户之间的沟通联系效率,从而营造更加和谐美好的居住氛围[^4]。虽然此部分内容主要面向房地产行业从业者,但它同样体现了科技力量改变传统业务形态的魅力所在——即通过高效的协作方式激发创造力潜能。 ```python # 示例 Python 脚本用于加载 CSV 文件并显示前五行记录 import pandas as pd def load_and_show_data(file_path): df = pd.read_csv(file_path) print(df.head()) if __name__ == "__main__": file_name = 'example.csv' # 替换为您自己的文件路径 load_and_show_data(file_name) ``` 上述脚本演示了如何使用 Pandas 库读取存储有结构化表格型态的数据源样本片段。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值