保姆级 Keras 实现 Faster R-CNN 五

本文详细介绍了使用Keras实现Faster R-CNN模型的过程,包括如何定义自定义的RPN分类损失函数和精度计算,如何编译模型并设置优化器,以及关键的训练步骤。读者将学习到如何处理不参与损失计算的锚点,以及如何调整模型参数以优化训练效果。
摘要由CSDN通过智能技术生成

上一篇文章 我们实现了数据的增强和数据读入 Generator, 那现在能不能进行训练了呢? 还是不行. 因为还有一个特别重要也是很多人最棘手问题: 损失函数

一. 损失函数

Faster R-CNN 的损失函数跟其他常见的分类损失函数不一样. 我们入门时学的分类网络的损失函数时网络的每一个输出都是参与计算的, 而 Faster R-CNN 有一些样本标记为不参与训练, 也就是不参与损失函数计算. 那要怎样才能只计算正样本和负样本呢? 看码说话, 其实灰常简单

# RPN 网络分类损失函数
def rpn_cls_loss(y_true, y_pred):
    # mask 用于判断哪些 anchor 是参训计算, 哪些不计算
    mask = tf.cast(y_true > NEUTRAL, dtype = tf.float32)
    # 因为用的是 sigmoid 激活, 所以是 binary_crossentropy
    loss = K.sum(mask * K.binary_crossentropy(y_true, y_pred)) / (1e-6 + K.sum(mask))
    
    return loss

代码中 mask 用于标记哪些样本参与计算. 在打标签的时候, -1 为中立样本, y_true > NEUTRAL 就是把 > -1 也就是 0 或 1 的标签 位置 转换成 True, 等于 -1 的标签 位置 转换成 False. 再经过 tf.cast 函数把 True 转换成 1.0, False 转换成 0.0, 转换过后, mask 就相当于一个只有 0.0 和 1.0 的一个 9 通道张量

K.binary_crossentropy(y_true, y_pred) 这句计算的时候全部的样本(包括中立样本)都是参与计算了的, 计算完成之后也是一个 9 通道的张量. 当 mask 乘上 binary_crossentropy 的结果后, 因为是相同位置的元素相乘, 所以中立样本的位置变成了 0, K.sum 的功能就只是计算正负样本的和了. 我们知道, 计算 Loss 还要取平均, 所以 K.sum(mask) 就是参与计算的元素的个数, 这样一除 Loss 结果就出来了. 是不是相见恨晚!

二. 精度计算

同样, 因为有的样本不参与计算 Loss, 所以计算训练精度的时候就不能带上它们玩, 也要弄一个自定义的精度自己玩. 代码也是相当的简单

# 分类精度评价函数
def rpn_cls_acc(y_true, y_pred):
    # idxs 表示参与计算元素的索引
    idxs = tf.where(K.not_equal(y_true, NEUTRAL))
    
    y_true = tf.gather_nd(y_true, idxs)
    y_pred = tf.gather_nd(y_pred, idxs)
    
    acc = keras.metrics.binary_accuracy(y_true, y_pred, threshold = 0.5)
    return acc

三. 模型编译

模型编译的时候要指定所用的损失函数和精度评估函数

# 编译模型
project_name = "faster_rcnn"

rpn_model.compile(optimizer = keras.optimizers.Adam(learning_rate = 1e-4),
                  loss = rpn_cls_loss,
                  metrics = [rpn_cls_acc])

Keras 的 Adam 默认 learning_rate 是 0.001, 经过我的试验, 选 0.0001 比较好训练一点

四. 模型训练

终于到了你期待的训练时刻了

# 训练模型
project_name = "faster_rcnn"

epochs = 64
batch_size = 8
augment = AUGMENT_NUM # 一张图像增强后的图像数量, 这里是 4

train_reader = input_reader(train_set, CATEGORIES, batch_size = batch_size, augment_fun = data_augment)
valid_reader = input_reader(valid_set, CATEGORIES, batch_size = batch_size, augment_fun = data_augment)

history = rpn_model.fit(train_reader,
                        steps_per_epoch = len(train_set) * augment // batch_size,
                        epochs = epochs,
                        verbose = 1,
                        validation_data = valid_reader,
                        validation_steps = max(1, len(valid_set) * augment // batch_size),
                        max_queue_size = 8,
                        workers = 1)

训练的代码按套路来的, 所以也没有什么好讲的. 如果你的显存比较小, 就要把 batch_size 设置小一点, 不然会爆炸(OOM)

Train for 2004 steps, validate for 250 steps
Epoch 1/64
  74/2004 [=>............................] - ETA: 22:51 - loss: 3.4566 - rpn_cls_acc: 0.9460

到这里, 你就等待训练完成吧… 看样子没有一天一夜是训练不完了. 训练完成之后保存模型和参数

# 保存模型与参数
rpn_model.save(osp.join(log_path, project_name + "_model.h5"))
rpn_model.save_weights(osp.join(log_path, project_name + "_weights.h5"))

五. 代码下载

示例代码可下载 Jupyter Notebook 示例代码

上一篇: 保姆级 Keras 实现 Faster R-CNN 四
下一篇: 保姆级 Keras 实现 Faster R-CNN 六

# 工程内容 这个程序是基于tensorflow的tflearn库实现部分RCNN功能。 # 开发环境 windows10 + python3.5 + tensorflow1.2 + tflearn + cv2 + scikit-learn # 数据集 采用17flowers据集, 官网下载:http://www.robots.ox.ac.uk/~vgg/data/flowers/17/ # 程序说明 1、setup.py---初始化路径 2、config.py---配置 3、tools.py---进度条和显示带框图像工具 4、train_alexnet.py---大数据集预训练Alexnet网络,140个epoch左右,bitch_size为64 5、preprocessing_RCNN.py---图像的处理(选择性搜索、数据存取等) 6、selectivesearch.py---选择性搜索源码 7、fine_tune_RCNN.py---小数据集微调Alexnet 8、RCNN_output.py---训练SVM并测试RCNN(测试的时候测试图片选择第7、16类中没有参与训练的,单朵的花效果好,因为训练用的都是单朵的) # 文件说明 1、train_list.txt---预训练数据,数据在17flowers文件夹中 2、fine_tune_list.txt---微调数据2flowers文件夹中 3、1.png---直接用选择性搜索的区域划分 4、2.png---通过RCNN后的区域划分 # 程序问题 1、由于数据集小的原因,在微调时候并没有像论文一样按一个bitch32个正样本,128个负样本输入,感觉正样本过少; 2、还没有懂最后是怎么给区域打分的,所有非极大值抑制集合canny算子没有进行,待续; 3、对选择的区域是直接进行缩放的; 4、由于数据集合论文采用不一样,但是微调和训练SVM时采用的IOU阈值一样,有待调参。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr-MegRob

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值