线性代数与空间几何

线性代数核心内容包括矩阵运算、行列式、线性方程组Ax=b和特征值问题Ax=λx。矩阵乘法不满足交换律,逆矩阵可求解Ax=b,行列式的性质涉及消元、转置。矩阵的秩与线性方程组的解密切相关,揭示了几何上的维度关系。通过正交变化,可将向量组转化为正交基,连接线性代数与空间几何。
摘要由CSDN通过智能技术生成

引言

对于线性代数我们首先需要了解线性代数在解决什么问题。纵观普通专业的线性代数本。我们可以看到这门课主要的内容是:

  • 矩阵的一些计算和定义
  • 行列式的计算
  • Ax=b
  • Ax= λ \lambda λx
  • 补充

我们可以看到前两部分的内容只是一些对矩阵和行列式的一些基础知识性的了解,是为后部分的内容服务的,而真正精彩的内容,实用的内容是在后两部分,以及进一步扩展到线性空间的概念,让多维空间的描述变的可能。这是非常令人amazing的.

再具体进行之前先给出一些关键词及其英文的解释:

矩阵 matrix
column
row
行列式 determinant
消元 Elimination
转置 transpose
rank
inverse
方阵 square matrices
高斯消元 Gaussian Elimination
初等行变换 elementary row operation
上下三角矩阵 * lower/upper triangular
从第二个矩阵减去第一个矩阵的四倍 subtracts 4 times the first equation from the second

矩阵及运算

  1. 矩阵的线性运算 的运算规则几乎与我们的认知相同 包括加法,数乘等运算;

  2. 矩阵的乘法运算 也属于基本知识。这里给出几个特点

    • C=AB,A 的列数等于B的行数,计算才有意义
    • 一般情况下 乘法不满足交换律,即AB ≠ \neq =BA
  3. 矩阵的转置 矩阵的转置即把矩阵的行和列互换 ,比较重要的一条性质如下。

    ( A B ) T = B T A T (AB)^T =B^T A^T (AB)T=BTAT
    此外若 A T = A A^T=A AT=A,称A为对称矩阵。若 A T = − A A^T=-A AT=A,称A为反对称矩阵。

  4. 矩阵的逆和克拉默法则 AB=BA=E 则AB互为逆矩阵记作 A − 1 A^{-1} A1

    • 若矩阵可逆则 ∣ A ∣ ≠ 0 |A|\neq0 A=0
    • 逆矩阵的求法 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac1{|A|}A^* A1=A1A A ∗ A^* A为伴随矩阵,由A矩阵的代数余子式构成,因此可以得到 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE
    • 由矩阵的逆的运算可以得到Ax=b的解x,此即克拉默法则。

    A x = b , 则 A − 1 A x = A − 1 b ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值