未完成:线性代数与几何(上)

解线性方程

x_i=\frac{D_i}{D}\left ( D\neq 0 \right )(D为系数行列式)

 

排列(permutation)

1.把n个不同的元素按一定顺序排成一行,叫做这n个元素的一个排列

2.具有自然顺序的排列叫自然排列,如1234,258。

3.排列中如果一个大的数排在小的数之前,则称这两个数构成一个逆序

4.一个排列的逆序总数叫逆序数,用\tau \left (j_1j_2...j_n \right )表示

5.逆序数为偶数的排列叫偶排列,反之叫奇排列

6.对换排列中的两个数,并保持其他数不动,得到新的排列的操作叫对换

7.对换的性质:对换一次,奇排列变偶排列,偶排列变奇排列

8.奇偶排列总数的性质:在全部n阶排列中(n>=2),奇偶排列各占一半(设奇排列有s个,偶排列有t个,由上一条性质可知,s<=t且t<=s,故s=t)

 

9.n阶行列式(determinant)

10.n阶行列式的定义:\begin{vmatrix} a_1_1 &a_1_2 &\cdots &a_1_n \\ a_2_1& a_2_2 & \cdots & a_2_n\\ \vdots &\vdots & &\vdots \\ a_n_1 &a_n_2 &\cdots &a_n_n \end{vmatrix} =\sum(-1)^{\tau(j_1j_2\cdots j_ n)}a_{1j_1}a_{2j_2}\cdots a_{nj_n}
11.上三角行列式的值等于主对角线的乘积(下三角行列式同理)\begin{vmatrix} a_1_1 &a_1_2 &\cdots &a_1_n \\ 0& a_2_2 & \cdots & a_2_n\\ \vdots &\vdots & &\vdots \\ 0 &0 &\cdots &a_n_n \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}

12.如果副对角线一侧或两侧均为0,行列式的值的正负由\left (-1\right )^{\frac{n(n-1)}{2}}决定(通过数副对角线上的逆序数可以得出此结论)

13.取n阶行列式展开式中的一项a_{1j_1}a_{2j_2}\cdots a_{nj_n}任意调换因子次序,得到a_{i_1k_1}a_{i_2k_2}\cdots a_{i_nk_n},有(-1)^{\tau (j_1j_2\cdots j_n) }=(-1)^{ \tau (i_1i_2\cdots i_n) +\tau (k_1k_2\cdots k_n)} (即\tau (j_1j_2\cdots j_n)\tau (i_1i_2\cdots i_n) +\tau (k_1k_2\cdots k_n)奇偶性相同,这可以用对换的性质证明),由此可以知道:行与列互换,行列式值不变(下面的性质1)

 

行列式的性质

1.(行列互换)行与列互换,行列式值不变

2.(乘法)某一行(或某一列)全部乘上常数k,等价于行列式*=k。即\begin{vmatrix} a_1_1 &a_1_2 &\cdots &a_1_n \\ \vdots &\vdots & &\vdots\\ ka_p_1&k a_p_2& \cdots & ka_p_n\\ \vdots &\vdots & &\vdots \\ a_n_1 &a_n_2 &\cdots &a_n_n \end{vmatrix} =k\begin{vmatrix} a_1_1 &a_1_2 &\cdots &a_1_n \\ \vdots &\vdots & &\vdots\\ a_p_1& a_p_2& \cdots & a_p_n\\ \vdots &\vdots & &\vdots \\ a_n_1 &a_n_2 &\cdots &a_n_n \end{vmatrix}

2.推论:行列式某一行(或某一列)全为0,行列式=0

3.(加法)\begin{vmatrix} a_1_1 &a_1_2 &\cdots &a_1_n \\ \vdots &\vdots & &\vdots\\ a_p_1+a_p_1{}'& a_p_2+a_p_2{}' & \cdots & a_p_n+a_p_n{}'\\ \vdots &\vdots & &\vdots \\ a_n_1 &a_n_2 &\cdots &a_n_n \end{vmatrix} = \begin{vmatrix} a_1_1 &a_1_2 &\cdots &a_1_n \\ \vdots &\vdots & &\vdots\\ a_p_1& a_p_2& \cdots & a_p_n\\ \vdots &\vdots & &\vdots \\ a_n_1 &a_n_2 &\cdots &a_n_n \end{vmatrix}+ \begin{vmatrix} a_1_1 &a_1_2 &\cdots &a_1_n \\ \vdots &\vdots & &\vdots\\ a_p_1'& a_p_2'& \cdots & a_p_n'\\ \vdots &\vdots & &\vdots \\ a_n_1 &a_n_2 &\cdots &a_n_n \end{vmatrix}

4.(行行/列列互换)两行(两列)对换,行列式反号(\tau那里奇偶性变了)

5.(行行/列列成比例)行列式中有两行或两列成比例,行列式等于0(先证明有两行相等的情况:由前一条性质可知,有两行相等的行列式D=-D,故D=0。再证明一般情况:由上述第二个性质可知,kD=0。

6.把行列式的某一行乘上k加到另一行,行列式值不变(由性质3、性质5可证明)
 

行列式的展开

1.余子式:划去元素a_{ij}所在行和列得到的n-1阶行列式叫a_{ij}的余子式,记为M_{ij}

2.代数余子式A_{ij}=(-1)^{i+j}M_{ij}

3.D=\sum_{i,j=1}^{n} a_{ij}A_{ij}

4.0=\sum_{i=1}^{n} a_{ji}A_{ki}(j\neq k)

5.综合3和4得到\delta _{ij}D=\sum_{i,j=1}^{n} a_{ij}A_{ij}\delta读作kronecker delta

 

克拉默(Cramer)法则

x_i=\frac{D_i}{D}\left ( D\neq 0 \right )

联系矩阵的知识可以知道,D!=0即D对应的方阵可逆,该方阵列展开得到的向量线性无关

 

矩阵(Matrix)

1.btw, 线性函数:满足齐次、可加。(eg: y=x, y=dx/dt+x是线性函数, 而y=x+1不是线性函数)

2.解集合相同的线性方程组叫同解线性方程

3.线性方程组的初等变换:a.某个方程乘上k(k!=0) b.方程乘上k加到另一个方程上 c.交换方程的位置

4.矩阵中与3对应的变换叫矩阵的初等变换

 

高斯-若尔当消元法(Gauss-Jordan Elimination

即通过初等变换对增广矩阵(包含系数和常数项)消元,最终得到一个上三角行列式。有唯一解的要求是系数矩阵是可逆的方阵。

 

齐次线性方程组

 

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值