GSL中的基样条曲线

基样条曲线

    本章描述用于计算平滑基样条(B样条)的函数。平滑样条与插值样条的区别在于,生成的曲线不需要经过每个数据点。有关插值样条的信息,请参见插值

头文件gsl_bspline.h包含了bspline函数的原型和相关声明。

42.1 概述

B样条是一种常用的用于拟合大数据集平滑曲线的基函数。为了做到这一点,横轴被分成若干个区间,每个区间的端点称为断点。通过在每个界面施加各种连续性和平滑度条件,将这些断点转换为结点。给定一个非递减的结向量,

 定义了n个k阶基样条,

 对于i = 0,…,n−1。三次B样条的一般情况由k = 4给出。上述递推关系可由de Boor算法以数值稳定的方式进行估算。

如果我们在区间[a, b]上定义适当的节,那么B样条基函数在该区间上形成一个完整的集合。因此我们可以将平滑函数展开为,

 给定足够的(xj, f(xj))数据对。系数ci 可以很容易地由最小二乘拟合得到。

42.2 初始化B样条求解器

gsl_bspline_workspace

    B样条函数的计算需要预先分配一个工作空间。

gsl_bspline_workspace * gsl_bspline_alloc(const size_t k, const size_t nbreak)

本函数为计算k阶B样条分配了工作空间。断点的数目由nbreak给出。这导致n=nbreak+k−2个基函数。三次B样条由k=4表示。工作空间大小为O(2k2+5k+nbreak)。

void gsl_bspline_free(gsl_bspline_workspace * w)

    本函数释放与工作空间w相关的内存。

GSL 开源 科学计算库 学习笔记(分享部分译稿) GSL是GNU Scientific Libary的简写,是一组专门为数值科学计算而设计的程序库。该程序库用C语言写就,C程序员提供了API。不过 可以对其使用swig工具进行封装,以便能被更高级的语言使用,比如C#,java等。读者可以在网上找到很多swig的例子。 GSL原码是以GPL协议发布的,获取与使用都非常地方便,这也是我们之所以选取GSL学习的根本原因。 GSL库涵盖了数值计算领域的方方面面,主要包括下面的计算领域,还有一些新的程序代码会不断纳入到GSL。 Complex Numbers 复数; Roots of Polynomials 多项式求根; Special Functions 特殊函数; Vectors and Matrices 向量与距阵; Permutations 排列; Combinations 组合; Sorting 排序; BLAS Support 础线性代数程序集(向量间运算,向量距阵运算,距阵间运算); Linear Algebra CBLAS Library 线性代数库; Fast Fourier Transforms 快速傅利叶变换; Eigensystems 特征值; Random Numbers 随机数; Quadrature 积分; Random Distributions 随机分布; Quasi-Random Sequences 近似随机分布序列; Histograms 直方图; Statistics 统计; Monte Carlo Integration Monte Carlo积分; N-Tuples N元组; Differential Equations 微分方程; Simulated Annealing 模拟退火算法; Numerical Differentiation 数值差分; Interpolation 拟合与插值; Series Acceleration; Chebyshev Approximations Chebyshev逼近; Root-Finding 求根; Discrete Hankel Transforms 离散Hankel转换; Least-Squares Fitting 最小二乘算法拟合; Minimization 最小值; IEEE Floating-Point IEEE浮点运输; Physical Constants 物理常量; Basis Splines 样条曲线; Wavelets 小波变换。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值