机器人轨迹规划——三次样条轨迹1(基于速度的求解方法)

本文详细介绍了如何利用三次样条曲线进行机器人轨迹规划,确保轨迹平滑且加速度连续。通过设定起点和终点速度,文章探讨了计算中间点速度的方法,并给出具体的数学求解过程。此外,还列举了Python和C++中计算三次样条曲线的开源库。
摘要由CSDN通过智能技术生成
### 三次样条插值法在单片机上的实现 #### 基本概念 三次样条插值是一种用于构建平滑曲线的方法,它通过一系列给定的数据点生成一条连续且具有二阶导数连续性的曲线。该方法广泛应用于需要平滑过渡的应用场景中,如机器人步态控制、轨迹规划等[^1]。 #### 数学模型 为了实现在单片机上进行三次样条插值,首先要建立其数学模型。假设有一组数据点 \((x_i, y_i)\),其中 \(i=0,1,...,n\),则可以通过求解如下方程组来获得每个区间内的三次多项式系数: \[ S(x)=a_{i}+b_{i}(x-x_{i})+c_{i}(x-x_{i})^{2}+d_{i}(x-x_{i})^{3} \] 这里,\(a_i=y_i\) 是已知条件;而其他未知量可通过边界条件和其他约束条件得到解决。通常情况下会采用自然边界条件(即两端点处的二阶导数值设为零),从而简化计算过程。 #### 单片机实现思路 考虑到单片机资源有限,在实际编码过程中应当尽可能减少内存占用以及优化运算速度。因此建议预先离线计算好各个区间的参数存储于数组之中,并在线性查找对应区间后再做简单加减乘除即可完成快速查询。 #### 示例代码 (C语言) ```c #include <stdio.h> #define N 4 // 数据点数量-1 // 定义节点坐标及其对应的y值 float x[N+1] = {0.0f, 1.0f, 2.0f, 3.0f}; float y[N+1] = {0.0f, 0.5f, 2.0f, 1.0f}; void spline(float h[], float u[]) { int i; for(i = 1; i <= N-1; ++i){ h[i]=x[i]-x[i-1]; u[i]=(3*(y[i+1]-y[i])/h[i])-(3*(y[i]-y[i-1])/h[i-1]); } } int main(){ float h[N],u[N]; spline(h,u); printf("预处理完毕\n"); return 0; } ``` 上述代码仅展示了部分核心逻辑——初始化和设置必要的变量与函数框架。完整的程序还需要进一步补充关于求解三对角矩阵的部分以获取最终所需的二次项系数向量 `c[]` 和一次项系数向量 `b[]` ,之后再利用这些信息去定义具体的插值函数来进行预测或绘制图形。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

boldyoungster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值