【交叉熵】以e为底,-logx,x属于0-1的函数图像是怎样的

已知:softmax后得到概率P(0-1之间),取P的以e为底的负对数,就是交叉熵

我们要讨论的是函数 f ( x ) = − log ⁡ e ( x ) f(x) = -\log_e(x) f(x)=loge(x),其中 log ⁡ e ( x ) \log_e(x) loge(x)表示以 e e e为底的对数函数。

首先,让我们看看这个函数的特点:

1. 定义域:

  • 对数函数 log ⁡ e ( x ) \log_e(x) loge(x)的定义域是 x > 0 x > 0 x>0,因此 − log ⁡ e ( x ) -\log_e(x) loge(x)的定义域也是 x > 0 x > 0 x>0
  • x x x属于 ( 0 , 1 ) (0, 1) (0,1),所以我们只关心这个区间上的图像。

2. 函数行为:

  • x → 0 + x \to 0^+ x0+ log ⁡ e ( x ) → − ∞ \log_e(x) \to -\infty loge(x),所以 − log ⁡ e ( x ) → + ∞ -\log_e(x) \to +\infty loge(x)+。这意味着当 x x x趋近于零时,函数值会趋向于无穷大。

  • x = 1 x = 1 x=1 log ⁡ e ( 1 ) = 0 \log_e(1) = 0 loge(1)=0,因此 − log ⁡ e ( 1 ) = 0 -\log_e(1) = 0 loge(1)=0。这意味着在 x = 1 x = 1 x=1时,函数值为 0。

  • 单调性: 对于 0 < x < 1 0 < x < 1 0<x<1 log ⁡ e ( x ) \log_e(x) loge(x)是负值,并且随着 x x x的增加, log ⁡ e ( x ) \log_e(x) loge(x)向 0 逼近,因此 − log ⁡ e ( x ) -\log_e(x) loge(x)是一个递减的函数。

3. 图像特征:

  • 左端点: x x x趋近于 0 时,函数值趋向于无穷大。
  • 右端点: x = 1 x = 1 x=1时,函数值为 0。
  • 单调性: 在区间 ( 0 , 1 ) (0, 1) (0,1)内,函数是递减的。

4. 图像大致描述:

在区间 ( 0 , 1 ) (0, 1) (0,1)内,函数 − log ⁡ e ( x ) -\log_e(x) loge(x) + ∞ +\infty +逐渐递减,直到 x = 1 x = 1 x=1时,函数值为 0。整体图像是一条从左上方到右下方的下降曲线。

5. 绘制图像:

如果用图像表示,可以想象它的形状如下:

  • x x x非常接近 0 时,函数值接近于正无穷。
  • 随着 x x x增大,函数值逐渐减小,最终在 x = 1 x = 1 x=1时函数值为 0。

这是一个类似于对数函数翻转的图像,在 x = 1 x = 1 x=1处触碰 y = 0 y = 0 y=0的水平线,并且在 x x x趋近于 0 时,图像迅速上升至无穷大。

6. 绘图代码:

如果你想使用 Python 来绘制这个函数图像,可以使用 matplotlib 来实现:

import numpy as np
import matplotlib.pyplot as plt

# 定义x的范围 (0, 1) 之间,避免x=0导致对数无法计算
x = np.linspace(0.01, 1, 400)

# 计算 -log(x)
y = -np.log(x)

# 绘制图像
plt.plot(x, y, label=r'$- \log_e(x)$')
plt.axhline(0, color='black',linewidth=1)  # x轴
plt.axvline(1, color='black',linewidth=1)  # x=1的竖线
plt.title(r'Plot of$- \log_e(x)$for$x \in (0, 1)$')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值