💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
目前,化石能源仍然是发电系统最主要的能量来源.然而,以煤、石油和天然气为主导的化石能源不 仅会排放大量含硫,氮化合物等有害气体,而且会严重影响生态平衡,危害社会可持续发展[1].随着全球变暖趋势增加,人类更有意识去减少化石能源消耗,逐渐纳入新能源.“十三五”期间,我国将大力发展环境治理,加强环保督察,推动绿色发展,推动可再生能源发展.电力行业是大型化石能源消耗产业,在保持新能源替代进程中,电力系统环境经济调度( Economic-Environmental Dispatching,EED)因其仅对现有调度策略进行规划,而且可以同时兼顾环境保护政策和经济调度效益等特点,因此受到了广泛关注[2].传统经济调度模型具有的高维数、非凸、非线性、多约束等特点,EED 问题在保持原有特点下,增设环境因素,形成多目标规划问题.目前,已有许多研究者求解了传统经济调度问题.文献[3]利用对自适应罚函数中惩罚因子和修补策略的设定,提出了基于反捕食粒子群算法的 EED 模型,并解决了传统经济调度中一些问题.文献[4]在传统进化算法前提下,对算法进行改进,并对传统经济调度问题进行求解.文献[5]提出社会演化算法,用基于范式学习与更新的进化寻优思想设计算法结构,并运用该算法解
决了电力系统机组组合问题.通过上述分析,传统和改进算法都有其优势,但在解决各类问题时,容易形成局部最优,影响调度方案获取.
在权衡环境因素时,文献[6]通过对实时电价并网时各微源的满意度计算,来对比分析多目标优化值,并实现了较好的环境效益.文献[7]在考虑维护成本和环境污染前提下,通过对不同权重系数的线性加权,建立多目标规划模型,并进行求解.文献[8]基于风险评估前提下,建立多目标经济调度模型,运用多目标差分进化算法进行求解.本文提出了一种多元宇宙算法( Multi-Verse Optimizer,MVO) ,该算法运算速度快,较适合多维度优化问题.综合阀点效应和环境影响因素,运用 PPF 定价原则协调多目标因素,建立 EED 模型.最后以 10 机组和 40 机组测试系统为例,证实了本文方法的有效性和经济性.
多元宇宙算法求解电力系统多目标优化算法有很好的效果,代码换成自己的目标函数,加上约束和惩罚项等。本文用多元宇宙算法求解电力系统多目标优化问题——电力系统环境经济调度问题。
📚2 运行结果
10机组运行结果如下:
40机组的同理可得,就不一一展示。
本文提出了一种求解电力系统环境经济调度的新方法,计及阀点效应和污染排放因素,建立多目标规划模型,利用PPF定价原则权衡多重因素. 多元宇宙算法在求解EED问题时具有计算精度高,收敛速度快等特点,在求解高维度问题表现更佳,适用于其他工程问题研究.
部分代码:
clc;
clear;
close all;
tStart=tic;
% global costdata emissiondata B B0 B00 Pd VarMin VarMax nVar
global data Pd VarMin VarMax nVar
Pd=10500;
data=xlsread('IEEE40.xls');
% % costdata=[data(:,1:8)];
% costdata=[...
% 1 0.03546 38.30553 1243.5311 0 0 35 210
% 2 0.02111 36.32782 1658.5696 0 0 130 325
% 3 0.01799 38.27041 1356.6592 0 0 125 315];
% % emissiondata=[data(:,9:13)];
% emissiondata=[...
% 1 0.00683 -0.54551 40.2669
% 2 0.00461 -0.5116 42.89553
% 3 0.00461 -0.5116 42.89553
% ];
% B1=0.0001.*[...
% 0.71 0.3 0.25
% 0.3 0.69 0.32
% 0.255 0.32 0.8];
% B1=xlsread('B10.xls');
% B=B1(1:10,1:10);
% B0=[0 0 0 0 0 0 0 0 0 0];
% B00=0;
% B=B1(1:3,1:3);
% B0=[0 0 0 0 0 0 0 0 0 0];
% B00=0;
%%
Max_time=500; %迭代次数
N=100;
ArchiveMaxSize=100;
% max_iter=Max_time;
nVar=40; % Number of Decision Variables
VarSize=[1 nVar]; % Size of Decision Variables Matrix
VarMin=data(:,2); % Lower Bound of Variables
VarMax= data(:,3); % Upper Bound of Variables
fobj=@(x) IEEE40aobj(x);
dim=nVar;
lb=VarMin';
ub=VarMax';
obj_no=2;
Best_universe=zeros(1,dim);
Best_universe_Inflation_rate=inf*ones(1,obj_no);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]刘世宇,王孜航,杨德友.多元宇宙算法及其在电力系统环境经济调度的应用[J].东北电力大学学报,2018,38(04):19-26.