【复现】基于改进秃鹰算法的微电网群经济优化调度研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、秃鹰算法(BES)的改进方法与原理

1. 基础算法框架

2. 改进策略

3. 性能优势

二、微电网群的定义与结构特性

1. 基本定义

2. 典型组成

三、微电网群经济优化调度的目标与约束

1. 目标函数

2. 关键约束条件

四、基于改进BES的微电网群调度模型构建

1. 模型框架

2. 改进算法应用

五、与其他算法的对比分析

六、实验验证与应用案例

1. 典型实验结果

2. 应用案例

七、未来研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

文献来源:

随着光伏、风电等分布式电源的发展,配电网的供电模式得以改变,解决了传统火力发电带来的能源匮乏及环境污染问题,但其发电的随机性及波动性对配电网的稳定运行造成一定影响[1-5] 。以多个微电网组成的微电网群可有效消纳分布式电源,提高供电灵活性及可靠性,减少弃光、弃风率,降低经济成本[6-8] 。因此,构建微电网优化调度模型已成为微电网综合控制的核心问题之一,对减少微电网系统运行成本及环境污染具有重要意义[9] 。

目前国内外学者对微电网优化调度问题进行了大量研究。文献[10]以综合运行成本最低为目标函数,采用改进麻雀算法进行求解,研究表明相比于灰狼算法及蝙蝠算法,改进麻雀算法具有良好的收敛速度,但只考虑了单个微电网,并未考虑多组微电网组成的微电网群系统。文献[11]以发

电成本及环境成本最低为目标函数,采用改进蝙蝠算法进行求解,虽然改进蝙蝠算法最终解优于传统蝙蝠算法,但缺乏与其他算法的对比实验,未能进一步验证改进后算法的优越性。文献[12]以系统总运行成本最低为目标函数构建优化调度模型,采用改进量子粒子群算法进行求解,相比于粒子群算法及遗传算法,改进量子粒子群算法环境成本较低,但该模型并未考虑并网情况下与配电网进行电能交互的情况。文献[13]提出一种冷热电联供的微电网优化调度模型,以系统运行成本最低为目标函数,通过改进蝴蝶算法进行求解,与传统策略相比虽然降低了发电成本,但并未考虑环境成本。

上述研究对微电网群优化调度问题尚有欠缺,针对此,本文构建以 3 个单微电网组成的微电网群优化调度模型,综合考虑系统总运行成本及环境成本,采用改进秃鹰算法(improved bald eagle search algorithm,IBES)进行求解,通过融合反向学习和柯西变异策略来提高秃鹰算法(bald eagle search algorithm,BES)的寻优精度,最终通过与其他算法对模型进行求解,验证改进后算法的优越性。

一、秃鹰算法(BES)的改进方法与原理

1. 基础算法框架

秃鹰算法(Bald Eagle Search, BES)由Alsattar等人于2020年提出,模拟秃鹰捕食行为的三个阶段:

  • 选择搜索空间:基于猎物密度选择最优区域,通过参数控制最佳位置和平均分布位置。
  • 螺旋式搜索猎物:采用极坐标方程实现螺旋飞行轨迹,增强全局探索能力。
  • 俯冲捕获猎物:所有个体向最佳位置快速收敛,完成局部开发。
2. 改进策略

针对BES易陷入局部最优、收敛精度不足的问题,现有研究提出以下改进:

  • 混沌映射初始化:采用Sinusoidal混沌映射增强种群多样性,避免随机初始化的遍历性缺陷。
  • 反向学习策略:在俯冲阶段引入反向学习机制,扩大搜索范围。
  • 自适应机制:结合指数自适应调整全局与局部搜索权重,提升收敛速度。
  • 莱维飞行策略:在搜索阶段引入莱维飞行,增强跳出局部最优的能力。
  • 柯西变异:通过柯西变异扰动最优解邻域,提高寻优精度。
3. 性能优势

改进后的IBES算法(Improved BES)在测试函数中表现出:

  • 收敛速度提升84.5%。
  • 寻优精度提高8.43%,在光伏最大功率跟踪中功率波动减少30%。

二、微电网群的定义与结构特性

1. 基本定义

微电网群是由多个互联微电网组成的系统,具备电气、控制和信息交互能力,可实现能量互济。典型结构包括:

  • 并联连接:各微电网通过公共母线接入主电网。
  • 环形/网格连接:支持邻近微电网直接能量交换,提升冗余性。
2. 典型组成

以3个微电网组成的群为例:

  • 分布式电源:光伏(PV)、风力发电机(WT)、微型燃气轮机(MT)。
  • 储能设备:电池(BT)、超级电容器。
  • 负荷管理:电动汽车(EV)负荷、日常负荷。
  • 交互机制:通过能量管理中心实现微电网间及与主电网的电能交易。

三、微电网群经济优化调度的目标与约束

1. 目标函数
  • 经济性:总运行成本最小化,包括发电成本、设备维护、电能交易。
  • 环保性:CO₂、SO₂、NOx排放惩罚成本。
  • 综合目标:总成本=运行成本+环境成本。
2. 关键约束条件
约束类型具体内容
功率平衡发电+储能+购电=负荷+售电
设备运行限制MT爬坡速率(±50kW/h)、BT充放电深度(80% SOC)
电网交互限制联络线功率传输上限(≤500kW)
环境约束污染物排放量≤区域标准

四、基于改进BES的微电网群调度模型构建

1. 模型框架
  • 输入参数:分时电价、风光出力预测、EV负荷曲线。
  • 优化变量:各微电网的MT出力、BT充放电状态、交互功率。
  • 算法流程
    1. 初始化:采用混沌映射生成初始种群。
    2. 适应度计算:评估总成本(经济+环境)。
    3. 三阶段搜索
  • 选择阶段:优先搜索低电价时段购电策略。
  • 搜索阶段:螺旋探索多微电网协同调度方案。
  • 俯冲阶段:结合反向学习优化局部解。
2. 改进算法应用
  • 案例仿真:3个互联微电网的24小时调度中,IBES总成本为3530.40元,较传统BES降低12%。
  • 结果分析:在风光出力波动时段(如18:00-24:00),IBES通过动态调整BT充放电和微电网间交易,减少主电网依赖。

五、与其他算法的对比分析

算法类型优势劣势适用场景
粒子群(PSO)收敛速度快(<200代)易陷入局部最优实时调度
遗传算法(GA)全局搜索能力强计算时间长(>500代)多目标优化
改进BES(IBES)平衡探索与开发(精度↑30%)参数调优复杂高维、多约束问题

六、实验验证与应用案例

1. 典型实验结果
  • 收敛性:IBES在500代内达到稳定解,PSO需800代。
  • 经济性:IBES总成本较WOA降低15%,较SSA降低20%。
  • 环保性:CO₂排放量减少18%。
2. 应用案例
  • 光伏-波浪能阵列优化:IBES布局使总功率输出提升22%。
  • 配电网故障定位:求解速度提升84.5%,准确率提高8.43%。

七、未来研究方向

  1. 动态环境适应:结合深度强化学习实现实时调度。
  2. 多能流耦合:整合热、氢能等多能源形式。

  3. 分布式计算:采用边缘计算降低通信延迟。

结论

改进秃鹰算法通过融合混沌映射、反向学习等策略,显著提升了微电网群经济调度的优化能力。实验表明,IBES在复杂多约束场景中表现出更高的精度和鲁棒性,为可再生能源高渗透率下的电网优化提供了有效工具。未来需进一步探索算法在动态多目标场景中的普适性。

📚2 运行结果

部分代码:

% 约束条件的计算
constraint = zeros(1,7);
SOC = zeros(3,24);
SOC(:,1) = SOC0 - P_dis(:,1)/eta_BT + P_ch(:,1)*eta_BT;
for t = 2:24
    SOC(:,t) = SOC(:,t-1) - P_dis(:,1)/eta_BT + P_ch(:,1)*eta_BT;
end

% 约束11
constraint(1) = sum(sum(abs(P_WT + P_PV + P_MT + P_BT + P_MG + P_grid - P_L)));

for t = 1:24
    for k = 1:3
        
        % 约束12
        if t <= 23
            if P_MT(k,t+1) - P_MT(k,t) <= RMT_down(k)
                constraint(2) = constraint(2) + RMT_down(k) - (P_MT(k,t+1) - P_MT(k,t));
            elseif P_MT(k,t+1) - P_MT(k,t) >= RMT_up
                constraint(2) = constraint(2) - RMT_up(k) + (P_MT(k,t+1) - P_MT(k,t));
            end
        end
        
        % 约束13
        if SOC(k,t) <= SOC_min
            constraint(3) = constraint(3) + SOC_min - SOC(k,t);
        elseif SOC(k,t) >= SOC_max
            constraint(3) = constraint(3) - SOC_max + SOC(k,t);
        end
        
        % 约束15
        if P_MG(k,t) <= PMG_min(k)
            constraint(5) = constraint(5) + PMG_min(k) - P_MG(k,t);
        elseif P_MG(k,t) >= PMG_max(k)
            constraint(5) = constraint(5) - PMG_max(k) + P_MG(k,t);
        end
        
        % 约束16
        if P_grid(k,t) <= Pgrid_min
            constraint(6) = constraint(6) + Pgrid_min - P_grid(k,t);
        elseif P_grid(k,t) >= Pgrid_max
            constraint(6) = constraint(6) - Pgrid_max + P_grid(k,t);
        end
    end
end

% 新增的约束
constraint(7) = sum(sum(P_MG));

%% 计算罚函数
punishment_value = zeros(1,7);
for k = 1:7
    if 0 <= constraint(k) && constraint(k) <= 100
        punishment_value(k) = constraint(k);
    else
        punishment_value(k) = constraint(k)^2;
    end
end
punishment_value;
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]周辉,张玉,肖烈禧,等.基于改进秃鹰算法的微电网群经济优化调度研究[J].太阳能学报,2024,45(02):328-335.DOI:10.19912/j.0254-0096.tynxb.2022-1531.

🌈4 Matlab代码、数据

禁忌搜索算法在某些方面存在一些不足,需要进行改进。首先,禁忌搜索对初始解有较强的依赖性,较好的初始解可以帮助算法在解空间中搜索到好的解,而较差的初始解则会减慢算法的收敛速度。因此,可以将禁忌搜索算法与其他优化算法如遗传算法、模拟退火算法等结合,先产生较好的初始解,再使用禁忌搜索算法进行搜索优化。这样可以提高算法的性能和效果。 其次,禁忌搜索算法的迭代搜索过程是串行的,只是单一状态的移动,而非并行搜索。为了进一步改善禁忌搜索的性能,可以改进禁忌搜索算法本身的操作和参数选择,引入并行策略,实现并行禁忌搜索算法。另外,还可以与遗传算法、神经网络算法以及基于问题信息的局部搜索相结合,从而进一步提高算法的搜索效率和准确性。 此外,在集中性与多样性搜索并重的情况下,禁忌搜索算法可能存在多样性不足的问题。集中性搜索策略用于加强对当前搜索优良解的邻域进行更充分的搜索,以找到全局最优解。而多样性搜索策略则用于拓宽搜索区域,尤其是未知区域,当搜索陷入局部最优时,多样性搜索可以改变搜索方向,跳出局部最优,从而实现全局最优。增加多样性策略的一种简单处理方式是重新随机初始化算法,或者根据频率信息对一些已知对象进行惩罚。 综上所述,对禁忌搜索算法改进可以从改进初始解的产生、引入并行策略、与其他优化算法结合以及增加多样性搜索等方面进行。这些改进措施可以提高禁忌搜索算法的性能和效果,使其在实际应用中更加有效地解决问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Bald eagle search Optimization algorithm秃鹰搜索优化算法 Matlab](https://download.csdn.net/download/weixin_39168167/88262751)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【TS TSP】基于matlab改进的禁忌搜索算法求解旅行商问题【含Matlab源码 241期】](https://blog.csdn.net/TIQCmatlab/article/details/113732930)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值