tf.clip_by_value(t, clip_value_min, clip_value_max, name = None)

tf.clip_by_value是tensorflow中类似于numpy.clip的操作,会返回一个clip的op。也就是说,对于张量t中小于clip_value_min的值使其等于clip_value_min,大于clip_value_max的使其等于clip_value_max。

写这篇博文的原因是看了很多博客中写的参数都是min和max,其实这是不准确的。

代入的时候就会报错

TypeError: clip_by_value() got an unexpected keyword argument 'min'。

所以专门去官网查证了一下,正确的应该是clip_value_min和clip_value_max,如果直接写值进去的话就会默认这两个参数。name参数可写可不写。

>>> import tensorflow as tf
>>>
>>> import numpy as np
>>>
>>> t = tf.constant([[1.0, 2.0, 3.0],[6.0, 7.0, 8.0]])

>>> result = tf.clip_by_value(t, clip_value_min = 4, clip_value_max = 5)

>>> with tf.Session() as sess:

...     print(sess.run(result))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值