题目描述
FJ的N(1 <= N <= 100)头奶牛们最近参加了场程序设计竞赛:)。在赛场上,奶牛们按1…N依次编号。每头奶牛的编程能力不尽相同,并且没有哪两头奶牛的水平不相上下,也就是说,奶牛们的编程能力有明确的排名。 整个比赛被分成了若干轮,每一轮是两头指定编号的奶牛的对决。如果编号为A的奶牛的编程能力强于编号为B的奶牛(1 <= A <= N; 1 <= B <= N; A != B) ,那么她们的对决中,编号为A的奶牛总是能胜出。 FJ想知道奶牛们编程能力的具体排名,于是他找来了奶牛们所有 M(1 <= M <= 4,500)轮比赛的结果,希望你能根据这些信息,推断出尽可能多的奶牛的编程能力排名。比赛结果保证不会自相矛盾。
输入
第1行: 2个用空格隔开的整数:N 和 M
第2—M+1行: 每行为2个用空格隔开的整数A、B,描述了参加某一轮比赛的奶 牛的编号,以及结果(编号为A,即为每行的第一个数的奶牛为胜者)
输出
第1行: 输出1个整数,表示排名可以确定的奶牛的数目
输入样例
5 5
4 3
4 2
3 2
1 2
2 5
输出样例
2
N≤100 → 条件反射 Floyd
注意到战胜的关系是传递的,一个奶牛的排名确定 ↔ 这头牛和其他每一头牛的战胜关系都已知。
也就是我们要做的是,是通过已知信息,推断出所有的战胜关系,那么将 Floyd 稍微变形即可!
for(int k = 1; k <= n; k++){
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(mark[i][k] == 1 && mark[k][j] == 1){
mark[i][j] = 1;
}
}
}
}
当然,你也可以这样写:
for(int k = 1; k <= n; k++) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
mark[i][j] = mark[i][j] || mark[i][k] && mark[k][j];
}
}
}
#include<cstdio>
#include<iostream>
using namespace std;
int n, m, a, b, mark[101][101], ans;
int main() {
cin >> n >> m;
for (int i = 1; i <= m; i++) {
cin >> a >> b;
mark[a][b] = 1;
}
// 利用 Floyd 算法,推断出所有的战胜关系
for(int k = 1; k <= n; k++) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
mark[i][j] = mark[i][j] || mark[i][k] && mark[k][j];
}
}
}
ans = 0;
for (int i = 1; i <= n; i++) {
int tmp = 0;
for (int j = 1; j <= n; j++) {
if (mark[i][j] == 1 || mark[j][i] == 1) {
tmp++;
}
}
if (tmp == n - 1) ans++;
}
cout << ans;
}