基于意图的大模型对话系统

该功能出现在rasa-plus中。

基于意图大模型的对话系统,大模型扮演3个核心功能:

  • 基于prompt的意图分类
  • 无意图策略
  • NLG的rephrase

使用大模型做意图分类

意图和意图样例一起放入prompt

不建议将全部意图放入prompt,这样会让prompt太长,也会导致无法加入意图对应的样例。

如果不加入意图对应的样例,大模型只能根据意图的名字判断,可能无法预测出正常的意图。

只放入会用到的意图及其样例。

预测的意图不在领域意图内

当大模型预测的意图不在domain的全部意图内时,找到一个最接近的领域意图返回。

和输入最相似的样例放入prompt

通过向量搜索,找到和输入最相似的样例,放入prompt

Label a users message from a
conversation with an intent. Reply ONLY with the name of the intent.

The intent should be one of the following:
{% for intent in intents %}- {
  {intent}}
{% endfor %}
{% for example in examples %}
Message: {
  {example['text']}}
Intent: {
  {example['intent']}}
{% endfor %}
Message: {
  {message}}
Intent:
<
### 大语言模型在意图识别中的应用 大语言模型(LLM)在自然语言处理领域展现了强大的能力,尤其是在意图识别方面。通过调用提供`/completions`端点接口的支持服务,能够利用这些大型预训练模型执行复杂的文本理解任务,如意图分类[^1]。 #### 使用大语言模型进行意图分类的具体方法 为了实现这一目标,通常会采用如下方式: - **API请求构建**:向支持的LLM API发送带有待分析文本的数据包。这可能涉及简单的HTTP POST请求,其中包含要解析的消息字符串以及指定使用的特定模型版本。 ```json { "model": "text-davinci-003", "prompt": "Classify the intent of this message: 'Book a flight to Paris'", "max_tokens": 50, "temperature": 0.7 } ``` - **响应处理**:接收来自API的结果并从中提取预测标签或其他有用的信息。对于某些高级应用场景来说,还可以进一步定制化微调过程来提高准确性。 除了直接依赖外部提供的通用型大语言模型外,研究者们也在探索如何将这类强大工具与传统NLP架构相结合以获得更好的效果。例如,在Joint BERT框架下进行了深入探讨,该方案不仅考虑到了单句级别的特征表示,还引入了跨句子间关系建模机制,从而增强了整体性能表现[^2]。 ```python import requests def classify_intent(text, api_key): url = "https://api.openai.com/v1/completions" headers = {"Authorization": f"Bearer {api_key}"} data = { "model": "text-curie-001", "prompt": f"Determine the user's intention from this text:\n\n{text}\n\nIntent:", "max_tokens": 60 } response = requests.post(url, json=data, headers=headers) if response.status_code == 200: result = response.json() return result['choices'][0]['text'].strip() else: raise Exception(f"Error calling LLM API: {response.text}") # Example usage intent = classify_intent("I want to order pizza with extra cheese.", "<your_api_key>") print(intent) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值